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Abstract

A developmental view of evolving systems (ecologi-
cal, social, economical, organizational) is examined to
clarify 1) the role of selection processes versus collec-
tive, non-selective processes, 2) the origins of diversity
and its role in system performance and robustness 3)
the origin of explicit subsystem interactions (cooper-
ation/symbiosis) that enhance individual and system
performance, 4) the preconditions necessary for fur-
ther evolutionary development, and 5) the effect of
environmental timescales with adaptation timescales.
Three sequential stages of evolving systems (based on
the work of Salthe) are proposed: a Immature stage
dominated by highly decentralized, selective processes
with chaotic local and global dynamics, a Mature stage
dominated by non-selective, self-organizing processes
with global robustness but locally chaotic dynamics,
and a Senescent stage dominated by rigid interactions
with global fragility. A simple model problem with
many optimal and non-optimal solutions - an agent
solution to a maze - illustrates the entire developmen-
tal history. Within the model, the agents evolve their
capability from a random approach to an optimized
performance by natural selection. As the agents de-
velop improved capability, natural selection becomes
rare, and an emergent collective solution is observed
that is better than the performance of an average
agent. As the collective, self-organizing structures are
incorporated into individual capability within a stable
environment, constraints arise in the agent’s interac-
tions, and the system loses diversity. The resulting
Senescent system exhibits reduced randomness due to
the rigid structures and ultimately becomes fragile.
Depending on the degree environmental change, the
Senescent system will either “die,” or collapse under
environmental stress to the Mature or Immature stage,
or incorporate the constraints system-wide into a new
hierarchical system. The current study adds to the
literature on developmental systems by finding: Tran-
sitions between stages are dependent on the degree of
sustained environmental stability and how exclusive
cooperation (e.g., symbiosis) in a subsystem can orig-
inate, and how it results in a decline in diversity.

Introduction

One challenge for researches in evolving systems,
whether for economic, ecological, political, social or
organizational systems, is a common viewpoint for
both understanding the dominant processes in their
models and a basis by which to compare their mod-
els to others. The current work grew out of research
on how self-organizing groups can solve problems bet-
ter than experts and the consequent need to under-
stand non-selective, self-organization processes! (John-
son et al. 1998) and how it relates to natural selec-
tion (Johnson 2000). Both selective and non-selective
processes are observed in real systems and have va-
lidity. Both processes increase global fitness, but by
distinctly different mechanisms. But, because each
originates from very different viewpoints (competitive
versus non-competitive agents), can they be reconciled
into a single understanding? It was from this start-
ing point that the current study began. A detailed
examination of the dynamics and properties of non-
selective self-organization was done (Johnson 1998),
but offered no real insight into how this approach to
global function related to selective processes. What
was finally discovered was that these seemingly differ-
ent approaches are representative of different stages of
an evolving system (Johnson 2000). And the appar-
ent conflict is resolved by a developmental perspective
of evolution, based on the sustained work by Salthe

LAn example of non-selective self-organization is forag-
ing in social insects (Bonabeau et al. 1999), expressing what
is called “swarm” intelligence. In the absence of selection
(no ants die), a foraging group can be observed to perform
greater than the capability of the individual (e.g., the path
to the food is shorter for the average group than the best
individual). These final paths represent the collective ac-
tion of many individuals solving their own path problem,
in a manner that is ultimately useful to the entire popu-
lation but which is never expressed as a goal at the level
of the individual. Another example is path formation in
humans and the method for book referral used by Ama-
zon.com (Johnson 1998).



(1989, 1993, 1999) for ecosystems. Within this de-
velopmental view, an extension of the model problem
developed for non-selective self-organization is used to
illustrate the full developmental history of evolving sys-
tems. This study begins to address many questions
of interest in the fields of evolutionary systems: How
do groups achieve higher global functionality? How
can the robustness of the system be improved? What
global properties are prerequisites for greater function-
ality? How does the system “boot-strap” itself to a
higher functionality? The approach taken is review the
developmental view of evolving systems, and then pro-
pose simple model problem to illustrate the stages of
the theory and the mechanisms for transitions from one
stage to another. While the simple model is not rich
as real systems or highly developed simulation models,
its simplicity enables clear discussion of the processes
characterized by the general theory.

Developmental View of Systems

In this section a developmental view of evolving sys-
tems is presented, a summary of the work of Salthe
(1989, 1993, 1999) and its extension to a other sys-
tems, economic, political, social, and organizational
(Johnson 2000). The focus, here, is on the interplay of
natural selection with non-selective processes, on the
role of diversity, and on the transference of global emer-
gent properties to subsystems. While three stages are
presented below, it is understood that these are just
points in a continuous development. Furthermore, to
simplify the presentation, the systems are assumed to
be homogeneous in the progress of maturation (sub-
components are not mixed across states). More likely,
systems will have multiple stages of development simul-
taneously, particularly as a system increases in com-
plexity and partially independent subsystems undergo
cycles of maturation and failure and become out of
phase.

Three stages for the development of any evolutionary
system are: Immature systems - high selection pres-
sure, rapid component and global variations, highly
decentralized, low “complexity”, low symbiosis (mini-
mal interactions and dependencies), high entropy pro-
duction; Mature systems - low selection pressure, high
diversity, multiply interconnected and robust; Senes-
cent or aging systems - similar to Mature systems, but
interactions become restricted and rigid (lower varia-
tion in interactions - low entropy production), and the
resulting system is fragile.

Table 1 presents a variety of properties for the differ-
ent stages. The following definitions are used in the ta-
ble. Diversity is the uniqueness of the attributes of the
individuals. Interconnectivity is the degree of interac-

tion between individuals/subsystems. Chaotic dynam-
ics is the sensitivity of states (local or global) to small
changes. Decentralization is the degree of autonomy of
an individual’s actions. Individual flexibility is the de-
gree that the individual can survive changes in the en-
vironment or other sub-components; system flexibility
(robustness) is the degree of survivability of the global
system to environmental change or sub-component fail-
ure. Entropyis the measure per unit of the randomness
expressed within the constraints of the system.

Immature Stage Immature systems are character-
ized by “hard” selection (Fisher 1930; Wallace 1970),
with the corresponding aspects of relatively high com-
petition and high mutation rates. The interdependence
of individuals within Immature systems is initially low
(highly decentralized), but increases as interdependen-
cies and global structures form. Because of the role
of selection for improving group fitness, diversity of
the populations is essential for adaptation of the sys-
tem to changes in environment. Because diversity is
consumed by selection, diversity’s role is as an invest-
ment for future adaptation and does not contribute to
current system performance (the average state of the
individual fitness) (Johnson 2000). In fact, the pres-
ence of diversity in an Immature system at any one
time lowers system fitness because of high degree of
individual failure.

Mature Stage The evolution of a Immature sys-
tem to a Mature system is the creation of interdepen-
dency from the increasing diversity of individuals or
subsystems (Kauffman 1993). As a consequence, over-
all system fitness shifts from a consequence of selec-
tion to improved fitness resulting from non-selective,
self-organizing processes (Johnson 2000). Diversity in
Mature systems is essential to the current fitness of the
system and occurs, not as a result of new niche forma-
tion (a mechanism requiring selection), but just from
the random processes of mutation without hard selec-
tion: survival of the fittest becomes survival of the ade-
quate - also called soft selection (Salthe 1972; Wallace
1970). The development of global structures results in
less chaotic dynamics on a global level, but the respon-
siveness of the system is retained by having chaotic
dynamics at the local level (Johnson 1998). Similarly,
the global system becomes more robust, due to redun-
dancy and contingencies in the subsystems, a conse-
quence of randomly generated diversity and the flex-
ibility of the interdependencies between subsystems.
Given sufficient environmental variability, the system
will remain at a Mature state, because interdependen-
cies are sufficiently dynamic to prevent rigid interde-
pendencies from forming.



Property/Process Immature Mature Senescent
Diversity Increasing High Declining
Interconnectivity Low and increasing High and redundant Declining and rigid
Chaotic dynamics:

locally High High Low

globally High Low Low
Selection - High Low - preserves status quo Low
Competition -
Individual turnover
Source of new Niche creation Random generation None
diversity
Group improvement | By individual selection By collective processes Same
Decentralization High Medium due to high interconnectivity —Low
Flexibility:

individual Low High due to elastic interactions Low

global Varied High due to redundancy Low
Entropy production High Moderate Low
Rate of environment | Varied Slowly varying None or little
change for stability

Table 1: Stages of development in evolving systems.

Senescent Stage The transition from a Mature to
Senescent system occurs as the consequence of a rel-
atively stable environment. The self-organizing, flex-
ible structures that are advantageous in the Mature
state become exclusive, reinforced and rigid; entropy
production is reduced. One form of these rigid struc-
tures is symbiotic (mutualistic or parasitic) relation-
ships. Expressed another way, the emergent proper-
ties, and consequent advantages, in the Mature system
are replaced by explicit (non-emergent) properties at
the level of the individual. This is advantageous in a
stable environment, because it eliminates the chaotic
and unpredictable nature of a flexible, dynamics of the
Mature stage. This transference is argued to be the
origin of explicit cooperative behavior between indi-
viduals in many systems.

Death or Hierarchical Resolution The final out-
come of the evolutionary cycle is dependent on many
factors. One possibility is system-wide failure, result-
ing in the loss (death) of all constituents. While rigid
structures in Senescent systems offer advantages to the
subsystems, they are detrimental to the robustness of
the global system. Senescent systems can fail if envi-
ronmental stress is sufficient to break critical interde-
pendencies. Then, due to the rigidity of the system, a
global collapse of the system can result. From a global
perspective, the collapse can return a Senescent system
to a Mature or Immature stage. Alternatively, the ad-
vantageous rigid structures can be subsumed system-

wide, and the evolutionary process can begin again on
top of the structure. The adoption of DNA encoding
or formation of a cell nucleus in life is an example of
useful structures being incorporated system-wide, al-
lowing variation then to occur on top of these global
structures. The possibility that rigid structures can be
subsumed system-wide is a path to developing hierar-
chical systems.

Examples of Each Stage

A prime example of a Immature systems is the field
of Evolutionary programming and Genetic algorithms,
summarized by Fogel (1999) and characterized by the
use of algorithms using population-based variation and
selection. Methods based on non-selective processes,
such as the simulations presented in the Mature stage
below, are absent.

An example of a Mature stage is a mature ecosys-
tem, composed of diverse species, where each individ-
ual living to fulfil their own needs, resulting in a stable
system that benefits all. While competition and se-
lection occurs in Mature ecosystems, the global fitness
(e.g., robustness) is due to the non-competitive inter-
actions of a diverse community (Johnson 2000). The
creation of new diversity is continual, not because of
selection, but from lack of selection. The ecosystem is
locally chaotic (species and individual interactions are
unpredictable), but the global system is robust and
insensitive to details of the chaotic nature. For social
systems (organizational or political), most of the above
observations for ecosystems can be also made. In par-
ticular, the unappreciated aspects of social networks in
organizations provide problem solving capability and



contingencies that directly result from diverse individ-
uals or groups (Linstone 1999).

Examples of fully Senescent systems are rare due to
their fragility. Very old ecosystems, such as the Aus-
tralian rainforest that drains into the Great Barrier
Reef, are good examples. Interactions are either highly
specialized, such as a single species pollinating another
single species, or highly restricted, such as the limited
predators of the extremely poisonous tree frogs. The
American automotive industry a decade ago reflected
a system that was highly evolved but had limited flex-
ibility, with few and fixed interdependencies.

A Model Problem of Evolution

A model problem is presented to illustrate the develop-
mental perspective presented in the last section. The
model problem as a Mature system has been studied
in detail (Johnson 1998) and is extended here to the
other stages. The model problem is the solution of a
sequential problem (e.g., as in Fig. 1), which has many
optimal and non-optimal solutions, solved by agents.
While this maze problem in Fig. 1 is quite simple from
a global perspective, it serves as a representation of
more complex processes: the solution of a problem that
has many decisions points and many possible solutions
and that has difficulty greater than that solvable op-
timally by one individual. A more realistic landscape
would not change the underlying processes that are
observed in this simple model. It is argued (Johnson
1998) that all evolutionary systems are sequential in
nature (every action of an individual has a prior, dif-
ferent action leading to the present state), and that the
current model is an abstracted representation of real
systems.

End
4 Or
Goal

Start
—

Figure 1: The example maze. Two of the 14 minimum
length paths are highlighted.

The solution process for a single agent is divided
into a Learning phase where simple rules of movement
are used to explore and learn about the problem do-
main. Because the agents have no global sense of the
problem, they initially explore the problem until the
goal is found. The learning process can be thought
of as an agent exploring the maze randomly and leav-
ing “breadcrumbs” behind to aid in their search for

the goal, thereby avoiding fruitless paths. Then in an
Application phase, this “learned” information (bread
crumbs or path preferences) is then used by the agent
to solve the problem again, typically with a shorter
path? as a consequence of eliminating unnecessary
loops. Essentially, the agent in the Application phase
follows the path with the most breadcrumbs.

The following assumptions are made and are dis-
cussed in detail elsewhere (Johnson 1998; Johnson
2000). These assumptions were analyzed and found
to not be critical to the conclusions of this study. 1)
The information available to an individual at a decision
point (node) is independent of the path that they took
to get there, i.e., the solution is path independent. Said
alternatively, only local information is used in the deci-
sion - there is no global perspective by the individual.
2) Individuals “solve” the same problem, both in goals
and in a common world view.? 3) Finally, individuals
have identical assessment of the value of information.

Simulations of the Model Problem

A variety of strategies for an individual agent was used
to solve the model problem (see Table 2). For exam-
ple, the random walk method starts the agent at the
beginning node, and then the next node is randomly
selected. The process is repeated, each time selecting
from all possible nodes connected to the present node,
until the goal is reached. The no-backstep random walk
method is the random selection of a new node excluding
the node that was just vacated. And the non-repeating
random walk method is the selection, if possible, of only
untried links. The Learning Rules are a set of rules that
mimic the idea of laying bread crumbs (or pheromones)
down to aid the search - and giving more bread crumbs
to the last link taken, so if the node is returned to and
all nodes have been tried, then the last link used will
be preferred.

These different Learning methods are differentiated
by the degree the learned information used - from the
extreme of being ignored in random walk to being op-
timized in the Learning Rules.* In the Application
phase, the agents use the bread crumbs of the Learning
phase to solve the maze again (see Table 2). The Ap-
plication Rules are the same for all methods, and ba-
sically pick the path with the greatest “breadcrumbs.”

2Note that “path length” is the number of segments in
the path, not the actual path length.

3The common world view is taken to mean that the
possible options that an agent has are identical. This does
not mean that the preferred options are the same, only that
the possible options are the same.

4Note that although multiple agents exist, the agents
solve the problem independent of the other agents; this re-
striction is removed in Senescent version of the simulations.



Why is the performance in the Application phase bet-
ter than in the Learning phase? Fig. 2 illustrates how
an extraneous loop is eliminated by the Application
phase for an individual. This mechanism is compara-
ble to those argued for collective improvement in ant
simulations (Bonabeau et al. 1999).

Learning method Average Standard
deviation
Random walk (RW) | 48.8 (123) 55 (103)
No-backstep RW 38.6 (64) 40 (66)
Non-repeating RW | 33.7 (51) 36 (51)
Learning Rules 12.8 (34) 3.1 (24)

Table 2: Path Lengths for the Application phase for a
population of 100 agents. The quantities in brackets
are for the Learning phase.
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Figure 2: Plots of the paths in the two phases for
a representative individual. The Application phase,
at right, removes the extra loop at point A from the
Learning phase, at left.

A Immature Stage of the Model Problem

The methods in Table 2 represent different strategies
in solving the problem by an individual agent. While
not implemented within the current simulations, a se-
lective process can be developed where the agents with
different strategies compete with each other, while re-
peatedly solving the maze, redoing the Learning and
Application phases fresh each time. If the agents above
a certain path length (number of links in a path) are
eliminated and replaced with a new agent that uses a
strategy sampled from the surviving agents (a genetic
approach), then the population would become domi-
nated by the most successful strategy - a typical result
of natural selection. In the absence of mutations and
with sufficient selection pressure, all diversity of capa-
bility would be lost.

Because the initial search is random, a collection of
individuals using the same method shows a diversity of
experience (knowledge of different regions of the maze),
diversity of preferences (different preferred paths at
any one location in the maze), and diversity of per-
formance (different numbers of steps). The differences

in “experiential” and “preferential” diversity, as op-
posed to capability diversity, are a direct consequence
of the redundancy in the solution space of the problem:
because there are many paths of equal length, there is
no selection pressure for one path over another. If a
selection pressure is added to encourage the agents to
occupy vacant portions of the maze (say food sources)
and if some “genetic” memory of the experience of the
maze is passed onto new offspring (“turn left at node
5”), then the different regions of the maze would be-
come equally populated. This is argued to be compara-
ble to the “filling” of niches as a form for diversification
in the process of natural selection. If a load-carrying
capacity were defined to be the global fitness of a group
of agents, then this experiential diversification would
result in a maximum for global fitness.

The above description of a potential simulation sce-
nario illustrates that the model problem can capture
the attributes in Table 1 associated with Immature sys-
tems. Because of the predominance of natural selec-
tion in evolutionary approaches, comparable examples
of Immature systems are abundant in the literature
(Fogel 1999).

Mature Stage of the Model Problem

In this section the collective effects of having multiple
agents solve a common problem is examined. The cen-
tral question is how contributions from diverse agents
can be organized in a manner that is useful to both the
individuals and to the global system. The approach
taken below is to present a collective solution to the
model problem, but one which does not require indi-
vidual interaction (competition or cooperation) or se-
lection in any form. Therefore, the model problem is
specifically constructed to isolate the emergent collec-
tive effects.

Forming a collective solution Suppose a group
of individuals is heading to a cafe and all have prior
experience with finding the cafe. At each corner, they
combine their own experiences without discussion, and
then chose a preferred path based on this collective in-
formation, using the same rules they each used as indi-
viduals. Said another way, suppose a group could see
the bread crumbs of all of the members, and they pick
the path with the greatest amount of bread crumbs.
The realization of this metaphor in the current model
problem is to use a linear combination of the each in-
dividual’s experiences at each node in the maze for all
the individuals in a group (Johnson 1998). Then the
same Application rules as used for the individual are
used on this group information to find a group solution.
In some sense, the collective is a “super-informed” in-
dividual in that it has access to more information, but



has the same capability as an individual. Figure 3
shows the simulation results for groups of increasing
size for the different learning methods listed in Table
2. In Fig. 4, the simulations using the Learning Rules
are shown (the Novice and Established concepts are
discussed shortly). Because of the variation in per-
formance for small groups, the simulations results in
Figures 3 and 4 are ensemble averages of many simu-
lations. To easily identify the improvement of the col-
lective over the average performance of the individuals
in the group (the collective advantage), the collective
path lengths are normalized by the average of the per-
formance of the individuals making up the ensemble
(around 12.8 on average).
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Figure 3: The path length for different numbers of
groups of individuals using the various rules in Table 2.
Each point on a curve is an average of 50 simulations.
The two curves for the novice are for a selection of
different individuals in the group.
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Figure 4: The normalized path length for different
numbers of groups of individuals using the Learning
Rules. The two curves for the “learned information”
groups are for two different random selections of indi-
viduals.

In the repeated solution to an unchanging prob-

lem, we tend to remember only the information that
is needed and forget extraneous information associ-
ated with unused paths. Here, the equivalent effect
is for the agent to remember only “established” or re-
inforced information along paths, thereby “forgetting”
unused paths. The process of forgetting unused in-
formation does not change the performance of an indi-
vidual agent, because both the learned and established
information produces the same path in the Application
phase. An established individual experience is created
from the learned experience by retaining information
used in an individual solution, and forgetting unused
information (e.g., the information used on the right
in Fig. 2). In Fig. 4, the collective performance of
the learned and established individual information is
shown. The significance of the difference in perfor-
mance is discussed in the section below on diversity.

The Collective Advantage as Emergence The
model problem is developed with three requirements:
1) rules of the agents do not use global information,
2) the agents do not include logic for finding a shorter
path and 3) the agents learn and apply information
independently (do not interact or cooperate). These
three requirements assure that any observed global
property or functionality cannot be predicted from the
properties of the individual. In Figs. 3 and 4 we observe
that, with the exception of the random walk simula-
tion, large collectives perform better than the average
individual making up the collective and for collectives
of sufficient size using the Learning Rules, the collec-
tive solution converges to one of minimum paths (the
other methods converge to a non-optimal solution, as
noted below). Therefore, the occurrence of a shorter
path length for large collectives over the average indi-
vidual is an emergent property of the system.

One mechanism of the collective improvement is the
collective equivalent of the elimination of extraneous
loops, similar to process of improvement of the indi-
vidual in Fig. 2. Because the collective bread crumbs
are a superposition of the information of many individ-
uals, collective bread crumbs can contain extraneous
loops as observed in Fig. 2, but which are only partially
closed in the individual contributions. Fig. 5 illustrates
how this can occur. By combining the information of
multiple individuals, collective bread crumbs contain
complete information and the extraneous loops can be
removed from the group path. This emergent global
property was found to be a robust property of the
model problem and insensitive to many alterations or
removal of assumptions in the model (Johnson 1998).
The only exception was for groups composed of individ-
uals learning by the random walk method (discussed
next).



What is the significance of an emergent global prop-
erty in this model? Before explicit forms of symbiosis
and interdependencies between individuals can evolve,
there first needs to be some emergent expression of the
advantages of dependencies (Hemelrijk 1997). This is
the classic “boot-strapping” dilemma of all evolving
systems (Kauffman 1993).

Figure 5: Paths of three individuals in the Learning
phase, at left, combine to form the Collective Path,
at right. Extraneous loops in the collective solution
are eliminated from incomplete loops in the individual
contributions.

The above discussion leads to the question of how
the emergent capability in the model problem could
be used by the individual or collective in a way which
is not a consequence of explicit cooperation. The fol-
lowing variation is proposed. Suppose many individu-
als solve the maze simultaneously. At any given time,
if there is more than one individual at a node, then
a collective decision is made and the group continues
to the next node together. Because the likelihood of
the formation of a group is random and no selection of
information from a subset of the group is made, this
is an example of a combination of information that is
both random and non-selective. The consequence is
that the randomly formed group would follow the pre-
viously identified collective solution from that point on,
assuming no other individuals are added to the group.
If other individuals or groups are added during their
progress to the goal, the additional members would
only improve the collective solution.

Coupling of individual and group performance
The results in Fig. 3 are essentially a study in which
the problem difficulty (maze) is held constant and the
individual’s capability is varied. A comparable study
was done in which the mazes were made more com-
plex while the individual’s capability was held constant
(Johnson 1998). The following conclusions were drawn.
1) A simple maze to a good individual solver is trivial,
and no collective advantage occurs. 2) Mazes of greater
difficulty than can be trivially solved by an individual
are solved optimally by large groups. 3) An extremely
difficult maze to an individual with fixed capability

leads to a random individual solution and no collective
advantage is observed. These conclusions indicate that
harder and harder problems cannot be solved by larger
and larger groups of individuals with constant ability.
Or, equivalently, the individual must have some ca-
pability (i.e., not random) which can be amplified in
groups. These statements indicate that the collective
advantage is coupled to the individual problem solving
ability and the global problem difficulty. Hence, an
essential aspect of the development of an evolving sys-
tem can be identified: the process of natural selection
is needed to increase the performance of the individ-
ual to the point which the emergent global structures
can amplify the weak individual signals. This, then,
explains why the groups formed from individuals that
learn by the random walk method fail to show a col-
lective advantage: there is no coherent signal that can
be amplified by the collective solution.

Collective Application Phase
Learning Method Novice Established
Random Walk (RW) | 32 (0.31) 21 (0.46)
No-Backstep RW 13 (0.32) 9 (0.42)
Non-Repeating RW | 10 (0.30) 10 (0.44)
Learning Rules 9 (0.38) 9 (0.60)

Table 3: Path Lengths for the Application phase for
different Learning phases for a population of 100. In
the parentheses are the diversity measures.

Diversity and collective advantage What prop-
erty of the group can be used to predict the occurrence
of the collective advantage? The best correlation found
was a measure of diversity which gives more weight to
the contributions of the individuals that have the least
commonality with the group - see (Johnson 1998) for
a formal definition. In other words, individuals with
potential experiences that are not shared by others are
the most important. As shared potential experiences
increase at a node, the weighting is less, until it is fi-
nally zero if all members of the group share the same
potential experiences. The words “potential experi-
ence” are used, because no consideration is given to
the magnitude of the preferences at a node.

In Table 3, a summary is given for collectives of 100
members for the various individual learning methods
for a single simulation. The values of the experiential
diversity are given - where the diversity is normalized
such that it is between zero and one. Groups using
established information are found to have a higher di-
versity measure and perform better than groups using
novice information. Because the correlation for the
results using the random walk learning method does
not follow the same trend as the other simulations,



this suggests that the effect captured by the experien-
tial diversity measure is not the only reason for higher
performance of the collective, and some accounting of
quality of information, such as the relative performance
of the individual, is also required.

Chaos and robustness in the simulations The
model problem for the Mature stage expresses both
chaos (locally) and robustness (globally). A detailed
study of the local chaotic nature of the simulations
(Johnson 1998) indicates, for example, that the spe-
cific path (sequence of nodes) of the collective solution
is sensitive to the addition of one individual, even for
arbitrarily large groups. This is a consequence of the
problem domain containing multiple paths of equal fit-
ness. But, the ability of the collective to find a mini-
mum path is not chaotic, but is stable to small changes.

The robustness of the global solution can be demon-
strated by also evaluating the sensitivity of the model
problem to noise. Noise in this context is the ran-
dom replacement of valid information in the individ-
ual’s contribution to the collective, thereby creating
false information. Fig. 6 shows the effect of the addi-
tion of noise in simulations with different frequencies:
0.0, 0.3, 0.7 and 0.9, where 0.0 represents the simula-
tion using the Learning Rules in Fig. 2. These results
are insensitive to the magnitude of the noise, as long
as it is less than the maximum weighting of a path.
The collective solution is observed to be remarkably
insensitive to the addition of noise at low frequencies.
Even at higher frequencies, the noise only delays the
collective advantage to larger groups.® This is a clear
demonstration how diversity makes the collective deci-
sion robust. The above results support the conclusion
that the diversity measure is also a measure for the
robustness of the collective solution.

Senescent Stage of the Model Problem

The essential difference between the Mature and Senes-
cent systems is the formation of rigid interactions in
the place of flexible ones. In the model problem the
Mature-Senescent transition is captured by the intro-
duction of feedback of the collective experience to ei-
ther individuals or groups during the Learning or Ap-
plication phases. This approach is comparable to the
feedback of the combined pheromone trails to the indi-

5Note that an individual performance is much more sen-
sitive to noise than the collective. This occurs because noise
leads an individual to parts of the maze for which they have
no experience from the Learning phase. In unexplored re-
gions, the Application Rules degenerate to a random walk
approach. For collectives, particularly large collectives, ex-
perience is available throughout the entire maze and, there-
fore, the collective cannot be misdirected by false informa-
tion to unknown parts of the maze.
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Figure 6: The effect of the random replacement of the
individual’s contribution to the collective for different
frequencies of replacement.

viduals paths in ant-motivated simulations (Bonabeau
et al. 1999). While this added feature to the model
problem has not been examined in detail, sufficient ev-
idence suggests that the feedback effect is significant
and has the expected consequences.

Suppose in the Application phase of the collective,
described in the prior section, as the groups increase in
size they make use of the collective experience of the
previous group. This was implemented in the simula-
tions presented in Fig. 4 by letting the bread crumbs for
the Application phase of the current group size be a lin-
ear combination of the previous group’s bread crumbs
and the current group’s bread crumbs. This combined
collective experience was then passed onto the next size
group. When only 10 percent of the prior group’s in-
formation is used, the convergence to a minimum path
occurred by a group size of 8, instead of 20. Even
more importantly, the local chaotic nature of the col-
lective solution was lost: the same minimum path is
selected as a consequence of the positive reinforcement
of a single path in repeated collective solutions. Al-
though not examined, the robustness to noise of this
collective solution is expected to decrease with the loss
of group diversity. These simulation results suggested
the following analysis of the model problem.

Suppose in the following discussion that a collective
experience has been generated, as describe in the sec-
tion for the Mature stage. If this collective experi-
ence is used by a new individual during its Learning
phase, then the individual will identically follow the
choices made by the collective in the collective Appli-
cation phase. A unique individual experience will not
be created by the individual, because there is no ran-
dom exploration that leads to diversity. This is because
the individual begins the Learning phase with no ex-
perience (zero bread crumbs), and the presence of the



collective experience will dominate the learning of the
individual. The resulting individual experience from
this collectively-enhanced learning process will cause
the individual in its Application phase to duplicate (to
within paths of equal preference) the path of the col-
lective - a minimum path for large collectives. This
process of individual learning based on the experience
of the collective will filter out the information of alter-
native paths that were originally part of the collective
experience, which was the basis for the system robust-
ness. Hence, the individual achieves optimal perfor-
mance, but at the cost of loss of individual robust-
ness. If a new group is created from these “collectively-
enhanced” individuals, they will express zero diversity
and exhibit none of the robustness of the prior diverse
collective. Furthermore, this “collectively-enhanced”
group will perform optimally, but never better than the
collective of identical individuals: the collective advan-
tage will not occur, even if the “collectively-enhanced”
individuals did not find a minimum path.

The above understanding is all within the context
of a “stable” environment for the model problem: the
beginning node and end node (goal) are unchanged in
the above process. Suppose that the above process is
repeated, but the end node is changed between the for-
mation of the collective experience and the Learning
phase of the “collectively-enhanced” individual. The
consequence is that the collective experience would
not correspond to the current goal, and the individ-
ual would resort to a random search, resulting in a re-
turn to a diverse population of individuals and a model
performance similar to the Mature state describe ear-
lier. If the goal change is not significantly different,
then the system will come to a new equilibrium based
on the old experience. If the goal is changed signif-
icantly, then the earlier structures (dominant paths)
will be eliminated and replaced by new structures. If
the simulations also included the “genetic selection”
described in the Immature stage of the problem, the
performance of the individual may be sufficiently poor
to trigger a return to the Immature stage and selection
of new capabilities.

The above process is argued to be the mechanism by
which a diverse and robust population, as described in
the Mature phase section become a Senescent system.
In a stable environment, the emergent properties of the
interactions (e.g., the collective path) can be incorpo-
rated by the individual to optimize their performance,
but only at the expense of the loss of robustness of the
collective. Depending on the rate of change in the en-
vironment, the system will either remain flexible in its
interactions (slow rate of change for the Mature stage)
or create rigid structures (no change for the transi-

tion from the Mature to Senescent stage) or lose all
rigid structures (rapid change from the Senescent to
Immature stage). In all of the above discussion the
extent of the problem domain was unchanged. Sup-
posed that the present maze is only one of many over-
lapping mazes, each with its own agents. Within this
context, then, the formation of rigid structures on one
level represents the incorporation of a subsystem struc-
ture, upon which further variation can occur on top of
or around it. This models the formation of a hierar-
chical system (Mayer and Rasmussen 1998).

Summary

The main theme of this work is the presentation of a
developmental theory of evolving systems (ecological,
social, political, organizational). The main purpose is
to understand of the roles of diversity and mechanisms
of higher functionality by processes of non-selection. It
is only within a developmental perspective that non-
selective processes can be compared to the predomi-
nant explanation of natural selection as the source of
functionality in evolving systems.

The developmental view of evolution identifies three
sequential stages: a Immature stage dominated by
highly decentralized, selective processes and chaotic
dynamics (local and global), a Mature stage domi-
nated by non-selective, self-organizing processes and
global robustness, and a Senescent stage dominated
by rigid interactions and global fragility. The allowable
transitions of an evolving system through these devel-
opmental stages depend both on the rate of environ-
mental change (external pressure) and the occurrence
of prerequisite processes of the stage before. These pre-
requisites are 1) high diversity of individuals, 2) suf-
ficient local interconnectivity between individuals or
subsystems, 3) sufficient capability of the individual
relative to the global challenges that can be amplified
by self-organizing processes, and 4) mechanisms for the
capturing of emergent properties at the global level in
the individual properties.

A model problem was proposed and used to illus-
trate the processes and transitions of a developmental
view. It is significant that one simple model yields in-
sights into abstract concepts (self-organization, selec-
tion, diversity, robustness, origin of cooperation, etc.)
and lends credence to the view that a sequential prob-
lem with multiple solutions solved by an diverse agents
is an appropriate general model for evolving systems.
Comparable model problems of evolution of the iter-
ated prisoner’s dilemma and cellular automata are not
as general.

The followTng insights into developmental systems
are captured by the simple model. 1) Diversity is best


Norman Johnson
rich, instead of general


defined as the measure of the uniqueness of the mem-
bers in a group. This measure correlates consistently
with group or system robustness for all the stages and
for the non-selective, self-organizing collective advan-
tage. 2) Diversity is expressed in rich systems in many
ways: capability, experience, preferences and perfor-
mance. Selection in a system may reduce one type of
diversity, but may not affect other types. 3) Diversity
can arise at random in groups of agents of identical
capability when a system has little or no selection pres-
sure (survival of the adequate, instead of survival of
the fittest). Diversity does not have to arise by selec-
tion or from agents of different capability. 4) Ran-
dom creation of diversity can contribute directly to
both global performance (collective self-organization)
and robustness, above that of an individual and in the
absence of any selection from the population. 5) The
process of collective, non-selective self-organization can
duplicate the system-wide advantages of explicit co-
operation. 6) The performance of the collective self-
organization is coupled to the individual performance
and global problem difficulty. 7) These emergent pro-
cesses are the precursors of cooperative advantages
that are often attributed to individuals and are the key
transitional mechanism from the Mature to Senescent
stage. 8) Mature systems can express both local chaos
(entropy) and global stability (robustness) simultane-
ously. Both are a direct consequence of the diversity
of the system. 9) Exclusive and explicit interdepen-
dencies, characteristic of the Senescent stage, reduce
entropy /diversity and consequently the robustness of
a system. These interdependencies are a transfer of
the collective self-organization properties observed in
the Mature phase into the properties of the individu-
als. These explicit interdependencies form only in sta-
ble environments. 10) Hierarchical systems can form
by the incorporation of these exclusive interactions into
global structures, thereby, creating a new landscape for
variation and return to an Immature or Mature stage
of development.

Acknowledgements

The author gratefully acknowledges insightful conver-
sations with Stanley Salthe and many other colleagues
that a shared common world view. This research is
supported by the Department of Energy under con-
tract W-7405-ENG-36.

References

Bonabeau, E., M. Dorigo, and G. Theraulaz. 1999.
Swarm Intelligence: From Natural to Artificial Sys-
tems. New York: Oxford University Press.

Fisher, R.A. 1930. The Genetic Theory of Natural Se-
lection. New York: Oxford Univ. Press.

Fogel, L.J. 1999. Intelligence through Simulated Evo-
lution:  Forty years of evolutionary programming.
Edited by A.M.J. Albus and L.A. Zadeh. New York:
John Wiley.

Hemelrijk, C.K. 1997. Cooperation without Genes,
Games or Cognition. In Fourth Furopean Conference
on Artificial Life, edited by P.H.a.l. Harvey. Cam-
bridge: MIT Press.

Johnson, N.L., S. Rasmussen, C. Joslyn, L. Rocha,
S. Smith, and M. Kantor. 1998. Symbiotic Intelli-
gence: Self-organizing knowledge on distributed net-
works driven by human interactions. In Artificial Life
VI, edited by C. Adami, R.K. Belew, H. Kitano and
C.E. Taylor. Cambridge, MA: MIT Press.

Johnson, N.L. 1998. C(ollective Problem Solv-
ing: Functionality Beyond the Individual: http:
//ishi.lanl.gov/Documents1.html.

Johnson, N.L. 2000. Importance of Diversity: Rec-
onciling Natural Selection and Noncompetitive Pro-
cesses. In Closure: Emergent Organizations and Their
Dynamics, edited by J.L.R. Chandler and G.V.d. Vi-
jer. New York: New York Academy of Sciences.

Kauffman, S. 1993. The Origins of Order: Self Orga-
nization and Selection in FEvolution. New York: Ox-
ford University Press.

Linstone, H.A., 1999. Decision Making for Technology
Ezecutives: Using multiple perspectives to improve
performance. Boston: Artech House.

Mayer, B. and S. Rasmussen. 1998. Self-Reproduction
of Dynamical Hierarchies in Chemical Systems. In
Artificial Life VI, edited by C. Adami, R.K. Belew,
H. Kitano and C.E. Taylor. Cambridge, Mass.: MIT
Press.

Salthe, S.N. 1972. Ewolutionary Biology. New York:
Holt, Rinehart and Wilson.

Salthe, S.N. 1989. Self-organization of/in Hierarchi-
cally Structured Systems. Systems Research 6:199-
208.

Salthe, S.N. 1993. Development and Evolution: Com-
plexity and change in biology. Cambridge: MIT Press.
Salthe, S.N. 1999. Energy, development and semio-
sis. In E. Taborsky (ed.) Semiosis, Evolution, Energy:
Towards a Reconceptualization of the Sign. Shaker
Verlag: 245-261.

Smith, J.B. 1994. Collective Intelligence in Computer-
Based Collaboration. New York: Erlabum.

Wallace, B. 1970. Genetic Load: Its Biological and

Conceptual Aspects. Upper Saddle River: Prentice-
Hall.



