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Abstract

A substantial amount of economic activity involves problem solving, yet economics
has few, if any, formal models to address how agents of limited abilities find good
solutions to difficult problems. In this paper, we construct a model of heterogeneous
agents of bounded abilities confronting difficult problems and analyze their individual
and collective performance. By heterogeneity, we mean differences in how individuals
represent problems internally, their perspectives, and in the algorithms they use to
generate solutions, their heuristics. With this model, we find that a collection of
bounded but diverse agents can locate optimal solutions to very difficult problems.
We can also calculate the marginal benefits to adding additional problem solvers. We
find that problem solving firms can exhibit arbitrary returns to scale, that the order
that problem solvers are applied to a problem can matter, and that the standard
story of decreasing returns to scale is unlikely.

1 Introduction

Economics has, by and large, treated workers as having unidimensional ability. In
effect, this reduces humans to robots of various speeds. This assumption requires ei-
ther that people do not differ in our behavior, some of us are just smarter or dumber
than others, or that economically relevant activities require workers to perform stan-
dard and repetitive tasks, that economic behavior is robotic. Forty years ago, when
a majority of workers produced goods and services (when they made stuff), this as-
sumption made sense. The models when tested proved accurate. The Cobb–Douglas
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production function was originally an empirical result.1 Identical workers performing
repeated, standard tasks exhibit diminishing marginal products. The implications for
markets and general equilibrium theory were theoretically and empirically pleasing:
wage equals marginal productivity.

In the modern economy, a minority of people earn their incomes by engaging in
the manufacture of goods. More people provide services, process information (Radner
1993), solve problems, and work for the government than manufacture goods. And
the manufacturing sector shrinks daily. It stands to reason that the canonical general
equilibrium model of economic activity might benefit from amending, or at a minimum
from a reinterpretation of the foundations. In many cases, the neoclassic model
of Arrow-Debreu (1954), Debreu (1959) and McKenzie (1959) remains an accurate
representation, particularly for the provision of services. Information processing,
however, appears to differ slightly (Radner and Van Zandt 1995), although decreasing
marginal returns can be established given reasonable assumptions.

To our knowledge, no models exist that analyze the remaining type of firms.
Firms that solve problems. Firms that search for cures to diseases, that develop soft-
ware, that design homes and bridges, that handle legal cases, that produce research,
that develop pollution reducing technology, that design welfare policies, that make
movies, that design video games, that engineer new drugs. Workers engaging in these
activities perform nonstandard tasks and human ingenuity plays an important role
in their performance. This observation fundamentally differentiates problem solv-
ing from other activities including manufacturing (where workers perform standard
tasks), based on which decreasing marginal product of labor is established and many
results of the standard economic model, such as wage equals marginal product of
labor, are drawn. How applicable are these results to problem solving? To address
this question, we need a model of problem solving that takes into account human
ingenuity. The model must capture the essence of problem solving and reveal how it
differs from other production activities. Second, the model must account for the fact
that despite conflicting interests and/or miscommunication, groups and not individ-
uals most often attempt difficult problems. At its core, any such model must include
assumptions that explain why groups outperform individuals. This paper represents
our attempt to construct such a model.

Any model of problem solving agents must abandon the perfect rationality as-
sumption, lest problem solving becomes trivial, not to mention that the assumption
is unrealistic. No one knows how to cure the common cold, let alone fold proteins.
The problem solvers must have limited abilities. They must also be allowed to differ
in the ways they encode and approach problems. This approach not only allows the
capture of individuality but also provides the basis for an explanation of why collec-
tive effort by a group can often outperform an individual: by virtue of being different,
individuals can improve upon each other’s solutions to a problem.

1See Douglas (1967) for an interesting account of the early development of Cobb-Douglas pro-
duction function.
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In the formal model, we assume that every solution to the problem can be evalu-
ated and all problem solvers agree on the value. For simplicity, we can interpret the
value as the amount of money the solution would sell for in the market. We assume
also that the problem is difficult. Agents are unable to simply choose the optimal
solution given their limited ability. Instead, they find the best solutions they can.
In the model, each problem solver is characterized by a perspective/heuristic pair: a
perspective is a problem solver’s internal representation of a problem, an encoding; a
heuristic is an algorithm, or rule(s) of thumb that a problem solver applies in search-
ing for a solution. The final solution that a problem solver can identify depends on
the interplay of her perspective and heuristic. Problem solvers may differ along either
dimension or along both.

Though our explicit characterization of agents as perspective/heuristic pairs is new
in economics, it is not without foundation. In their book Human Problem Solving,
Newell and Simon (1972) studied human problem solving and explicitly modelled
the process as following two steps: representation of the problem and then applying a
heuristic, although not necessarily only once in the process. Moreover in recent years,
many artificial agent models of decision making have been introduced into economics.
They can be found in macroeconomics (Sargent 1993), game theory (Kalai and Lehrer
1993 & 1995), and political economy (Kollman, Miller, and Page 1993). Artificial
agents have been defined as automata (Rubinstein 1986 and Kalai and Stanford 1988),
perceptrons (Cho 1993), genetic algorithms (Arifovic 1994, Miller 1992), and classifier
systems (Marimon, McGrattan, and Sargent 1990). In these models, agents choose
heuristics given a perspective which is chosen by the modeler and is fixed. Our model
can be seen as a generalization that contains many of these specific examples.

As mentioned above, one distinction between our model and these artificial agent
models is that we allow agents to have different perspectives. Adding this dimension
provides a potentially richer description of human capital and may enlarge the scope
of diversity in problem solving. Such diversity is our explanation for the prevalence
of group problem solving as opposed to individual problem solving. By including
the dimension of perspectives, we encompass as much as possible diverse problem
solving and at the same time keep in line with the cognitive foundation of human
problem solving. The logic of the argument here relies on the crucial assumption
that introducing perspectives truly enlarges the set of all different ways of solving a
problem compared to if one fixes a perspective and only allows heuristics to vary.
However, this assumption is by no means trivial and needs to be justified. In the
paper, we explore in great detail a special problem solving model, the binary string
model, which has more structure than the general model, and justify this assumption
by establishing a number of theorems that rely on the concept of equivalence classes.
Two agents belong to the same equivalence class if their distinct perspective/heuristic
pairs are indistinguishable in how they locate solutions to a problem. We also establish
a lower bound on the number of equivalence classes. The lower bound we find for this
more structured environment becomes astronomical as the problem size gets larger.
This result indicates the possibility of even greater diversity in problem solving for a

3



less restrictive environment which resonates with our motivation for group problem
solving.

Focusing on the carefully constructed binary string model of collective problem
solving, we derive two categories of results. The first category of results demonstrates
the possibility of collective optimality despite limited individual ability. We find that
diversity in either perspectives or heuristics proves sufficient for a collection of agents
to locate optimal solutions to a difficult problem. We want to point out here that
these findings apply equally well to a collection of agents over a long period of time
working on the same problem. Nothing in our analysis requires that the agents make
a decision as a group. All of the agents may work in isolation. It is only that they
have a collective goal.

The second category of results relies on interpreting our model as representative
of problem solving within firms. We calculate the returns to additional workers, the
improvement in the value of the best solution brought about by adding a worker
and examine their properties. Here, we arrive at some rather interesting conclusions.
We prove the possibility of arbitrary returns to additional problem solvers, and that
an identical group of problem solvers applied to a problem might exhibit increasing
returns or decreasing returns depending upon the order they are hired, even if each
agent has “equal problem solving ability”. Finally, we derive sufficient conditions for
the returns to additional problem solvers to be decreasing. However, as we shall argue,
these conditions defy basic economic logic. The agents must sort into problems that
confound them. Taken together, our results suggests less regularity in the returns to
additional workers for problem solving firms than for other types of firms. Our richer
description of human capital in problem solving allows a problem solver’s marginal
contribution to be context dependent. An agent’s marginal product depends upon
the relationship between her human capital and those of the other problem solvers.

Before proceeding with our analysis, we should mention several features missing
from our model. We ignore asymmetric and imperfect information. Every agent
can compute the value of a solution. They all use the same value function. We
ignore incentives. This assumption may be problematic given the importance placed
on incentive constraints in organizational structure and performance (Milgrom and
Roberts 1992). Relaxing either of these assumptions would allow for differences in
values of objects opening the door to preference cycles, agenda manipulation and
other difficulties. We ignore communication problems. Solutions can be costlessly
and errorlessly communicated to other agents. Finally, we ignore the obvious larger
implications of our modelling framework. The findings implicitly critique context
free, unidimensional measures of ability. We discuss this delicate issue in a separate
paper (Hong and Page 1998).

We have organized the remainder of this paper in seven parts. In section 2, we
provide some data describing the number of problem solving workers in the U.S.
economy and we comment on our assumption of diversity in human capital. We find
the number of problem solving workers to be substantial — not too different from
the number of manufacturing workers at present — and increasing. In section 3,
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we present a formal mechanistic model of heterogeneous individual problem solvers
based upon the perspective/heuristic dichotomy.2 In section 4, we describe in some
detail a special case in which agents rely on the same mathematical language for their
perspectives: binary strings, and construct a formal measure of diversity. In section 5,
we establish the aforementioned equivalence relationship among perspective/heuristic
pairs. In section 6, we prove a fundamental link between diversity among bounded
agents and collective optimality. In section 7, we examine the returns to adding
problem solvers. We find the possibility of arbitrary returns. We also find that a
reordering of agents of “equal ability” can shift the returns to adding problem solvers
from increasing to decreasing. We conclude with a discussion of the robustness of our
results as well as comments on some related issues including problem solvers who differ
in their interpretations of the values of objects, the possibility of miscommunication
between problem solvers, and differences between human and computers as problem
solvers.

2 Background

This paper rests on two background assumptions: (1) advanced economies contain
a sufficient percentage of people whose work consists of solving problems to warrant
creating a separate theoretical apparatus and (2) diverse perspectives and heuristics at
least partially explain the benefits of collections of agents to outperform individuals
at solving problems. We gather data from the United States to support the first
assumption. The second assumption seems noncontroversial. Fresh perspectives and
new ideas provide the basis for many improvements in problem solving contexts. We
cite some recent studies and elaborate further on this intuition.

2.1 Problem Solvers: The Data

Calculating the percentage of workers who should be classified as problem solvers
is a difficult task, so before entering into a micro–level discussion of job classifica-
tions, we begin by reporting some aggregate statistics which strongly support our
first assumption. While it is true that in the 1950’s when general equilibrium mod-
els were developed, the U.S. economy was nearly one half manufacturing, at present
less than one–fifth of the U.S. economy is classified as manufacturing. In fact, more
people currently work for state, local, and federal governments than work for man-
ufacturing firms. Most workers either provide services, process information, or solve
problems. Blurry lines distinguish these three classifications, so assigning workers to
each requires great care. Radner (1992) has estimated that up to forty percent of
U.S. workers are information processors, but his estimate includes workers one could
classify equally well as problem solvers.

2See Marr (1982) for a definition of mechanistic theories of behavior.
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One approach to estimating the number of problem solvers in an economy would
be to count the number of firms solving problems. Accepting this definition, the
problem solving segment would include many technological firms, such as software
development companies, much of the entertainment industry, including movie pro-
duction companies, and many professional firms, such as consulting companies and
law firms.3 And in fact, classifying firms in this way, we find that the portion of the
economy, whether measured in GDP or number of workers, comprised of problem
solving firms has grown over the past forty years.

An alternative approach, and the one undertaken in great detail here, relies on
data on job classifications. We count the number of workers whose job descriptions
suggest that they spend a substantial amount of time solving problems. This approach
includes workers employed by firms whose primary purpose is to process information,
manufacture goods, or provide services but which contain problem solving subunits.
These subunits may formulate strategies, provide legal defense, determine incentives,
or contemplate the restructuring of the organization. In addition, this approach ex-
cludes workers who though employed by firms which solve problems, actually provide
services, process information or manufacture goods. The data presented are taken
from The Statistical Abstract of the United States and The Statistical History of the
United States. The table below summarizes those workers whose primary responsi-
bility could be considered problem solving. For example, the numbers include man-
agement consultants, lawyers, and computer programmers but exclude bankers and
teachers. See Appendix 1 for a complete description of those job categories included
as problem solvers.

The Increase in Problem Solvers

Year 1950 1970 19924

problem solvers 6,081 9,630 21,392
(1,000)

total work force 59,230 79,802 117,598
(1,000)

percentage of total work force 10.3 12.1 18.2

5

The data show a substantial increase in the percentage of problem solvers in the
economy over the last forty years.

3In their recent book, The Winner Take All Society, Frank and Cook present data showing huge
increases in size for the top handful of consulting firms.

5The data for 1950 includes workers age 14 or older and for the other two years includes workers
age 16 or older.
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2.2 Improvement Through Diversity

The second assumption, that heterogeneity of perspectives and heuristics explains
the benefits of collections of agents, requires a more subtle motivation. There are
several reasons why groups may outperform individuals. The theory presented here
encompasses many of them. Consider, for example, the specialization explanation:
groups are better at solving multidimensional problems because individuals can de-
velop expertise on components of the larger problem. Our model accounts for this
phenomenon – the heuristics of the agents can be constructed so as to apply to a
portion of the domain, thereby mimicking specialization. We do not wish to dedicate
much effort to summarizing existing theories of group performance other than to say
that our assumption supports many and does not appear to conflict with others.

The modest goal of this subsection is to promote the simplicity and plausibility of
our second assumption: given the crucial caveat that all individuals agree on the value
of outcomes, collections of agents outperform individuals partially because people see
and think about the problems differently. Additional people create the opportunity for
more potential solutions. These additional solutions are only possible if people differ.
If all people encoded and solved problems identically, multiple heads would be no
better than one. To say abstractly that diversity can be beneficial seems indisputable,
but such statements in no way imply that any particular model of diversity stakes any
claim to accuracy. In the case of the present model, the issue of whether it captures
those aspects of diversity of thought which are most relevant to group problem solving
is left to the reader’s discretion.

One way to test whether our approach has merit would be to test whether groups
which are more diverse according to our measure actually perform better. Empir-
ical research using experiments with problem solving groups of varying degrees of
cultural diversity (Watson, Kumar and Michaelsen 1993) find that groups consisting
of more diverse individuals perform better than groups of homogeneous individuals
once initial communication barriers have been overcome. If group members value out-
comes differently, then diversity may be of little benefit (Chatman, Polzer,Barsade,
and Neale 1997). Overall though, there seems to be a strong consensus that di-
verse groups perform better at problem solving. Robbins (1994) in his organizational
behavior textbook says that “the evidence generally supports the conclusion that
heterogeneous groups perform more effectively than do those that are homogeneous.”
Although these studies do not measure diversity in the same way that we do, culture
plays a nontrivial role in how we interpret and approach problems. If there exists a
positive correlation between cultural diversity as measured by sociologists and prob-
lem solving diversity as measured here, then these studies can be viewed as supportive
of our second assumption. In fact, Thomas and Ely (1996) go so far as to say that
“Diversity should be understood as the varied perspectives and approaches to work
that members of different identity groups bring.” The italics are theirs.
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3 A General Model

We begin by constructing a general model of a finite group of problem solvers of
limited ability attempting to maximize a given value function defined over a large but
finite set of objects X (potential solutions to the problem). All problem solvers agree
on the value of the objects given by a value function V : X → <. The problem solvers
collectively attempt to find an optimal (or satisfactory) solution to the problem.

Each problem solver consists of an internal language, a perspective, and a heuris-
tics. A problem solver uses her internal language to represent the objects. It is
denoted by Γ. Her perspective is a mapping from the objects into her internal lan-
guage, and her heuristic consists of rules of thumb for moving around the space of
objects in her internal language. More formally, a problem solver P is characterized
by a dichotomy (M, A), where M denotes her perspective and A denotes her heuristic.

Def’n: A perspective M of a problem solver P is a 1-1 mapping from the set of
objects X to the problem solver’s internal language Γ, i.e., M : X → Γ is 1-1. Let S =
M(X) ⊂ Γ. A heuristic A is a finite collection of mappings, {φ1, φ2, ..., φm}, each a
mapping from the set S to S, i.e., A = {φ1, φ2, ..., φm} and for any k = 1, 2, ..., m,
φk : S → S.

The internal language may be interpreted at either of two levels. Neurologically,
our brains perceive and store information, and these perceptions differ across indi-
viduals. Metaphorically, people interpret problems based on their training, be it as
economists, lawyers, etc.. A perspective may not be defined over all of X, so the
problem solver need not be able to represent all objects in her internal language. A
perspective also may be many to one. More than one object are mapped to the same
representation in the internal language.6

The following example illustrates the concepts of perspective and heuristic.

Example 1: a job assignment problem Suppose n workers are to be assigned to
m jobs. Assume n ≥ m ≥ 2. Different assignments lead to different levels of profit.
A problem solver searches for an assignment of workers to jobs that generates the
highest profit.

One natural representation of this problem is a set of m×n matrices. In particular,
each assignment is represented by a matrix, (aij)i=1,...,m;j=1,...,n where aij = 0 or 1,
and aij = 1 if and only if worker j is assigned to job i. A heuristic on such a set of
m × n matrices can be a collection of rules that specify switches of pairs of rows or
pairs of columns.

A heuristic consists of rules for adapting the status quo solution in the problem
solver’s perception which might lead to improvement. It can be thought of as a

6See Kirschenheiter (1993) for an intriguing model which subsumes perspectives along these lines.
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problem solver’s bag of tricks. A problem solver searches from any status quo s ∈ S
in her internal language by asking, for each φk, whether V (M−1(φk(s)) > V (M−1(s)).
Two different search processes come immediately to mind. First, φj(s) becomes a new
status quo if and only if it gives the highest value7 among all the φk(s)’s and it has a
strictly higher value than s. Second, apply the φk to the status quo object s, the first
φk(s) that has a strictly higher value than s becomes a new status quo. The results
presented in this paper do not depend on the exact search process a problem solver
uses. We assume the use of this second type of sequential search process. In both
cases, search stops at a solution s in the problem solver’s internal language if and
only if there is no further improvement by applying any of the φk’s. The object in the
original domain X that corresponds to such s is naturally called a local maximum.
Specifically,

Def’n: Given a problem solver P = (M, A) where A = {φ1, φ2, ..., φm}. The neigh-
borhood of an object x ∈ X for P, denoted by bM(A, x), consists of all the objects
in X whose corresponding objects in P ’s internal language are the results of applying
heuristic A to the x’s corresponding object in P ’s internal language, i.e.,

bM(A, x) = {x′ : M(x′) = φk(M(x)) for some k = 1, 2, ..., m}

An object x ∈ X is a local maximum of V with respect to P , denoted by
x ∈ L(P, V ), if and only if

V (x) ≥ V (x′) for all x′ ∈ bM(A, x)

In modelling a group of problem solvers working to locate a solution to a com-
mon value function, we postulate that problem solvers have their own perspective/
heuristic pairs. In particular, if they have expertise in locating a good solution, it is
incorporated in their perspective/heuristic pairs. With this postulation, a team has
an advantage over individuals in reaching a better solution simply because different
perspective/heuristic pairs lead to the examination of more potential solutions and
thus a better final solution. Of course, different perspective/heuristic pairs do not
necessarily mean that they locate different solutions. In fact, one can imagine two
problem solvers with distinct perspective/heuristic pairs creating identical neighbor-
hoods and thus the same set of local maxima. In such a case, these two problem
solvers will not be of any help to each other in locating better solutions even though
they differ. In later sections, we discuss in depth the issues of equivalence and di-
versity of problem solvers and how diversity contributes to better performance in a
binary string model, a special case of our general model, where agents rely on the
same internal language - binary strings - according to which they encode objects,
and where heuristics are collections of flipsets. Here we present a simple example to
illustrate our basic model of problem solving and the intuitive idea of why a group of
heterogeneous agents can locate better solution than individual agents separately.

7If there is a tie, specific tie-breaking rules will be applied.
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Example 2: A team of city council members try to locate a solution to the following
public goods provision problem: 3 public projects, {p1, p2, p3}, are under consideration
(for example, build a subway route between downtown and the lake, clean up the lake,
build a public library by the lake). The issue is which one(s), if any, of the projects
to fund. There are 8 potential solutions. The net value for the city of each solution
is described in the following table. The goal of the team is to locate a solution that
generates the highest value for the city.

objects (possible solutions) values
x0: fund none 0
x1: fund p1 only 40
x2: fund p2 only 20
x3: fund p1 and p2 60
x4: fund p3 only 30
x5: fund p1 and p3 50
x6: fund p2 and p3 70
x7: fund all three projects 10

Council member 1 has the following perspective/heuristic pair (M1, A1): She en-
codes possible solutions into binary strings of length 3, s = s3s2s1, where each bit si
(i = 1, 2, 3) can take a value of either 1 or 0; for her, for any i = 1, 2, 3, si = 1 if
and only if pi is funded. Her perspective M1 is summarized in the following table.
Her heuristic A1 consists of three functions denoted by A1 = {{1}, {2}, {3}}. Each
function {i} (i = 1, 2, 3) maps a binary string s = s3s2s1 into a new string by flipping
the ith bit si from 0 to 1 if si = 0 or 1 to 0 if si = 1. Intuitively, it means she knows
three tricks, applying trick {1} will mean to change the decision about p1 only.

x M1(x)
x0: fund none 000
x1: fund p1 only 001
x2: fund p2 only 010
x3: fund p1 and p2 011
x4: fund p3 only 100
x5: fund p1 and p3 101
x6: fund p2 and p3 110
x7: fund all three projects 111

Let’s look at a possible search path of Member 1. She starts at x0 (fund no
projects) which she encodes into 000 and its value equals 0. She updates status
quo string by applying her tricks sequentially, say in the order of {1}, {2},and {3}.
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Applying trick {1} to the string 000 will lead her to 001 which corresponds to x1

(fund p1 only) and it has a value 40 which is an improvement. So she updates the
status quo string to 001. She then applies trick {2} to the string 001 to get 011 which
corresponds to x2 (fund p1 and p2) with value 60. The status quo is then updated
to 011. Applying trick {3} to 011 leads to 111 which corresponds to x7 (fund all
projects) and has a value 10. No updating occurs this time. She then applies trick
{1} to the string 011 to get 010 which corresponds to x2 (fund p2 only) and has
a value 20 and thus no update. Applying trick {2} to the string 011 to get 001
which corresponds to x1 (fund p1 only) and has a value 40 and thus again no update.
Therefore, there is no improvement applying any of the three tricks to the string 011
and the search ends and the solution of such a search is x3 (fund p1 and p2) with
value 60. x3 is a local maximum for Member 1. It is easily seen that the set of local
maxima for Member 1 with (M1, A1) is {x3, x5, x6} in which x6 is the maximum of
the value function. Member 1 with her perspective/heuristic pair will always end up
with one of the three local maxima. The initial object and the order that the tricks
are applied will determine the local optimum that is obtained.

Member 2 has a different perspective/heuristic pair (M2, A2): She also encodes
possible solutions into binary strings of length 3, s = s3s2s1, but for her, si = 1 if
and only if pi is not funded. Her perspective M2 is summarized in the following table.
Her heuristic A2 consists of only two functions denoted by A2 = {{1, 2}, {1, 3}}. The
function {1, 2} maps any binary string s = s3s2s1 into a new string by flipping values
of the 1st bit s1 and the 2nd bit s2 simultaneously. Intuitively, applying this function
will mean to change the decisions on p1 and p2 simultaneously. The function {1, 3}
is similarly defined.

x M2(x)
x0: fund none 111
x1: fund p1 only 110
x2: fund p2 only 101
x3: fund p1 and p2 100
x4: fund p3 only 011
x5: fund p1 and p3 010
x6: fund p2 and p3 001
x7: fund all three projects 000

The set of local maxima for Member 2 with (M2, A2) is {x1, x6} which differs from
Member 1’s set of local maxima. The maximum of the value function x6 is in both
sets. It is a general phenomenon that the maximum of a value function is contained
in every problem solver’s set of local maxima. x1 is a local maximum for Member 2
for the following reasons: she encodes x1 into 110 and x1 has a value 40; applying
trick {1, 2} gives 101 which corresponds to x2 with value 20; applying trick {1, 3} to
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110 leads to 011 which corresponds to x4 with value 30; thus no improvement can be
made through applying the two tricks that she has.

The above information tells us that if Member 1 and Member 2 work separately,
either may end up with a solution that is not the best solution because their problem
solving ability is confined by their respective perspective/heuristic pairs. Imagine
they work as a team in the following way: Member 1 works on the problem first and
locates a solution; Member 2 then joins Member 1 and they work together as one
person. Without too much difficulty, one can see that this team of Member 1 and
Member 2 will always be able to locate the best solution, x6. For example, suppose
Member 1 works on the problem and gets stuck with x5 which is one of her local
maxima. Member 2 joins her and takes the solution x5 located by Member 1. In
Member 2’s encoding, x5 is 010 string. Member 2 applies trick {1, 2} to get string
001 which corresponds to x6 with value 70 and is the best solution. Because of the
different perspective/heuristic pair that Member 2 has, she is able to improve upon
the solution where Member 1 got stuck.

For a group of problem solvers, an object is a local maximum if and only if
it is a local maximum for each problem solver within the group. To evaluate the
expected performance of an individual or a group requires a precise description of
how an individual problem solver applies her heuristic and how a group of problem
solvers apply their heuristics to problems. These descriptions are provided later in the
paper. One way to envision the search process is as a Markov chain. Through their
perspectives and heuristics, a problem solver applied to a problem creates a transition
matrix: a probability of going from any object to any other object.8 Together with a
prior probability distribution over objects, the Markov process generates a probability
distribution over the set of local maxima allowing for the computation of the expected
value of a local maximum for a problem solver. The expected value of a group of
problem solvers can be calculated similarly.

The next section contains a special case of our general model in which all problem
solvers rely on the same internal language – binary strings of length n. Although
binary strings may seem an odd choice, they offer two methodological advantages:
they are easy to understand and they map nicely into some economic problems such
as Example 2 above. The restriction to a single internal language raises the spectre
of brittleness. However, the abundant neighborhood structure in the binary encoding
makes our results more powerful: many of our claims rely on the construction of prob-
lem solvers whose perspective/heuristic pairs combine in interesting ways; the fact
that we can generate these perspectives in a more structured environment suggests
that these findings hold more generally. The robustness of the findings is discussed
in more detail at the end of this paper. Moreover, a primary goal of this paper
is to present a coherent model of heterogeneous boundedly rational agents solving
difficult problems. The binary string model enables us to contrast problem solving,

8See Ryall (1995) for a more complete Markov analysis.
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information processing, service providing, and manufacturing firms.

4 A Binary String Model

Hereafter, the objects are binary strings of length n, denoted by S = {0, 1}n, and all
problem solvers use the same internal language. This internal language is also binary
strings of length n. Note that this does not imply that all agents encode strings
identically. This construction enables the introduction of an “identity perspective”
in which a problem solver encodes the objects with the identity mapping. We often
use the identity perspective as a benchmark in our analysis. Each element in a string
is referred to as a bit. The i-th bit of a string s is denoted by si. A value function
then maps each object into a real number denoted by V : S → <.

Binary strings map nicely into many economic problems. Letting 1 denote “yes”
and 0 denote “no”, a binary string can denote the set of potential projects to be
undertaken (Page 1996), the group of employees assigned to a task, the attributes
of a product, the cities in which a movie is released, or the magazines in which a
particular advertisement is going to run.

Each problem solver has a perspective, which is her internal encoding of the objects
as binary strings.

Def’n: A perspective M : S → S is one–to–one and onto.

In this definition, the set S describes both the domain and the range of the
mapping M . As domain, S represents the set of objects. As the range, S represents
the objects in the problem solver’s internal language. To avoid confusion, we refer to
the object 00, for example, as object string 00, and if M(00) = 11, we refer to 11 as
the M–string 11.

An algorithm consists of a finite set of instructions (Knuth 1968). Given that
the number of strings is finite, an algorithm could list a different instruction for each
string and still satisfy this definition. We rely on a more restrictive notion. We
restrict attention to search rules defined independently of the string. For example, in
the case of binary strings of length three, a heuristic might consist of the following
three rules which generate, for each string, neighboring strings to be evaluated:

1. flip the first two bits

2. flip the first and last bits

3. flip all three bits

The neighbors of the string 000 would be 011, 101, and 111.9 Similarly, the
neighbors of the string 001 would be 010, 100, and 110. We formalize this idea as

9In the binary encoding bits are numbered from right to left. Flipping the first bit of the string
000 gives 001.
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follows: Define a flipset to be a subset of bits. A flipset can be viewed as a map from
S onto itself. Let N = {1, ..., n}.

Def’n: A flipset φ : S → S, where φ ⊆ N , φ(s) = y where y is defined according to
the following rule:

yi =

{
1− si if i ∈ φ
si if i /∈ φ

It is straightforward to show that the binary operation of composition in the set
of flipsets is both associative and commutative. We define a class of flipset heuristics
as follows. Let m ≥ 1.

Def’n: A flipset heuristic A = {φ1, φ2, ..., φm}.

In this framework, the heuristic which tests to see whether flipping any individual
bit would improve can be described by the collection of flipsets, AE = {φe1, ..., φen},
where φei = {i}. We refer to this as the elementary heuristic.

Def’n: The elementary heuristic AE = {φe1, φe2, ..., φen}, where φei = {i}

The elementary heuristic can also be defined for subsets of the set of bits. This
becomes important when a heuristic does not apply to the entire domain, such as
when a large problem is broken down into subproblems.

Def’n: The elementary heuristic defined on K ⊆ N , AK
E = {φei : i ∈ K}.

The number of flipsets in a flipset heuristic determines the size of the search
neighborhood. Assume that all flipsets in a flipset heuristic are unique.

Def’n: The size of a flipset heuristic sz(A) =| A |

Note that the elementary heuristic is of size n.
A problem solver in this framework is defined by, P = (M, A), where M is her

perspective and A is her flipset heuristic. Following the general model in Section 3,
we define:

Def’n: The neighborhood of object s for P = (M, A), bM(A, s) = {s′ ∈ S :
M(s′) = φ(M(s)) where φ ∈ A}

We shall say that two problem solvers are equivalent if their perspectives and
heuristics generate identical neighborhood structure on the set of objects.
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Def’n: Let P1 = (M1, A1) and P2 = (M2, A2). P1 and P2 are equivalent if for any
s ∈ S, bM1(A1, s) = bM2(A2, s).

Two problem solvers may have different perspectives and different heuristics but
still are of no help to each other if the neighborhood structure generated by their
respective perspective/heuristic pairs is the same. On the other hand, given any
object, if the two problem solvers have very different neighboring objects, there is
more chance that one problem solver can help to improve upon a local maximum of
the other problem solver. Thus, we measure the diversity of two problem solvers by
the average number of objects that belong to only one person’s neighborhood.

Def’n: The diversity of P1 = (M1, A1) and P2 = (M2, A2),

∆(P1, P2) =
2n∑
s=1

|(bM1(A1, s) ∪ bM2(A2, s))\(bM1(A1, s) ∩ bM2(A2, s))|
2n

Remark 1 Two problem solvers P1 and P2 are equivalent iff ∆(P1, P2) = 0.

Def’n: A group of problem solvers, {P1, ..., Pa} where Pk = (Mk, Ak) for any k ∈
{1, ..., a}, is maximally diverse if ∆(Pi, Pj) = |Ai|+ |Aj| for all i and j in {1, ..., a}
such that i 6= j.

We illustrate some of these concepts with Example 2 in Section 3. The two city
council members are denoted by P1 = (M1, A1) for Member 1 and P2 = (M2, A2) for
Member 2. Using the binary string model, M1 and M2 are described below, A1 =
{{1}, {2}, {3}} and A2 = {{1, 2}, {1, 3}}. For notational convenience, we identify the
binary strings by integers using the standard mapping. In what follows, s denotes a
binary string as well as its corresponding integer.

s 0 1 2 3 4 5 6 7
s 000 001 010 011 100 101 110 111

∪s\∩s denotes |(bM1(A1, s) ∪ bM2(A2, s))\(bM1(A1, s) ∩ bM2(A2, s))| in the table be-
low. We conclude that these two problem solvers are maximally diverse.
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s M1(s) bM1(A1, s) M2(s) bM2(A2, s) ∪s\∩s
x0 : 0 0 1,2,4, 7 3,5 5
x1 : 1 1 0,3,5 6 2,4 5
x2 : 2 2 0,3,6 5 1,7 5
x3 : 3 3 1,2,7 4 0,6 5
x4 : 4 4 0,5,6 3 7,1 5
x5 : 5 5 1,4,7 2 0,6 5
x6 : 6 6 2,4,7 1 5,3 5
x7 : 7 7 3,5,6 0 4,2 5

∆(P1, P2) = 5

5 Equivalence

Though we differentiate problem solvers along two dimensions, we do not rule out the
possibility of two problem solvers with different perspectives and heuristics generating
the same neighborhood structure. In this section, we formally define an equivalence
relation on perspective/heuristic pairs. We derive three theorems that taken together
establish the following two facts: First, in the binary string model, perspectives
permit greater flexibility than heuristics; this further highlights the significance of
explicitly allowing for different perspectives. Second, we find an enormous number
of equivalence classes. This second observation legitimizes the premise of this paper,
that individuals solve problems differently.

The results require substantial mathematical preliminaries. Here we introduce a
minimal amount of notation so that we can state and interpret our results. We leave
the detailed discussion for Appendix 2. Recall that n is the length of binary strings
in our model, and m is the size of a flipset heuristic (A = {φ1, ..., φm}). We place
no other restrictions except that m ≤ 2n − 1 (this has to hold because we assumed
implicitly that all flipsets in A are different). Here, we consider the case where m ≤ n
so that we can use the elementary heuristic as our benchmark.

Let 1 ≤ m ≤ n. Given a flipset heuristic A = {φ1, ..., φm}, and K a subset of
{1, 2, ..., m}, we can define the flips within K.

Def’n: Given a heuristic A = {φ1, ..., φm} and K = {i1, i2, ..., ik} a subset of
{1, 2, ..., m}, the flips within K applied to s, φK(s) = φik(...φi2(φi1(s))...)..

Note that φK(s) doesn’t depend on the order in which the flipsets are applied.
The span of a set of flipsets equals the set of all strings which can be generated from
the null string s0 by applying flipsets individually and in combination.

Def’n: The span of A = {φ1, ..., φm}, A⊕ = {s : s = φK(s0) for some K ⊆
{1, 2, ..., m}}
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The claim that follows uses the elementary heuristic as a benchmark to view
equivalence.

Claim 1 A perspective/heuristic pair (M, A) is equivalent to (M ′, AK
E ) for some per-

spective M ′ and some K ⊆ {1, 2, ..., n} such that |K| = m iff A⊕ is isomorphic to an
m-dimensional hyperplane of S.

Claim ?? implies that perspectives are at least as flexible as heuristics. Any
problem solver, no matter the perspective and heuristic as long as the span of the
heuristic has the full m-dimensions, can be looked upon as another problem solver
with a possibly different perspective and a simple heuristic which is an elementary
heuristic defined for a hyperplane of S.

Claim 2 There exist a perspective M and a K ⊆ {1, 2, ..., n} with |K| = m s.t.
(M, AK

E ) is not equivalent to (I, A) for any heuristic A.

We argued earlier that problem solvers not only use different search rules but also
represent problems differently. In our binary string model, Claims ?? and ?? together
imply that differences in perspectives fundamentally enlarge the set of possible ways
to solve a problem. If we believe that individuals represent problems differently, we
believe then that the number of ways of solving a problem exceeds the number of
different search rules.

Claim ?? suggests a lower bound on the number of equivalence classes of all
problem solvers.

Claim 3 The number of equivalence classes is at least

n∑
m=1

2n!

2n−m!(2mm)2n−m

When n is large, this lower bound becomes astronomical, demonstrating the enor-
mous number of ways for people to encode and attempt to solve problems even when
restricted to binary strings.

6 Optimality Through Diversity

In this section, we discuss our results on diversity and optimality. The three claims
below demonstrate how diversity among individual agents of limited ability can lead
to optimal collective solutions. Here we must be careful as to what we mean by
collective solutions. There are two possible interpretations. In the first, we imagine
the problem as existing in the economy at large. It may be something concrete like
designing a mousetrap or something abstract like teaching calculus. Each agent sees
the current existing solution and attempts to improve upon it. If the agent makes
an improvement, she earns the rents accruing from the increase in value. In this
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interpretation, there are no problems with incentives or communication. Recall that
all agents have the same value function.

In the second interpretation, agents belong to a firm. Here the agents work to-
gether to solve a problem within their organization. Within the firm, there is a
possibility of incentive problems, differences in values of solutions, and communica-
tion problems, since ideas need not be actualized. These caveats notwithstanding,
our findings suggest that firms, by focusing diverse skills on common problems, can
enable agents of limited abilities to locate optimal solutions to difficult problems.
Thus, firms might be thought of as devices for coordinating the attention of agents.

We shall dichotomize the notion of diversity along the perspective and heuristic
dimensions. Our first claim states that there exists a perspective such that the ele-
mentary heuristic has a unique local maximum, namely the global maximum. Thus,
for any problem there exists a way of viewing the problem, a perspective, such that
the simple rule of thumb, of flipping individual bits, locates the optimal solution.

Claim 4 For any function V such that V (s) 6= V (s′) for any s 6= s′, there exits an
M such that | L((M, AE), V ) |= 1. (Recall from Section 3 that L((M, AE), V ) denotes
the set of local maxima of the problem solver (M, AE).)

pf: We can order the strings according to their values under V from s1 to s2n where
V (sj) > V (sj+1). We next construct the linear function VL as follows:

VL(s) =
n∑
i=1

2i−1 · si

We can also order the strings according to their value under VL from ŝ1 to ŝ2n where
VL(ŝj) > VL(ŝj+1). Define the perspective M as follows: M(sj) = ŝj for j equal 1 to
2n. Choose an object string s ∈ L((M, AE), V ). It suffices to show that M(s)i = 1
for i equal 1 to n. The proof proceeds by contradiction. Suppose that there exists an
i such that M(s)i = 0. By assumption, VL(φei (M(s))) > VL(M(s)). It follows that
V (M−1(φei (M(s))) > V (s) , which contradicts s ∈ L((M, AE), V ).

The result of Claim ?? suggests the possibility that a potential employee can
locate an optimal solution to a difficult problem confronting a firm. Moreover, she
need not be particularly advanced in the heuristic she employs, so long as she has the
right perspective. A second implication, the one we shall stress here, is that diversity
of perspectives can lead to location of the global optimum.

At first blush, this would appear to make the categorization of the difficulty of a
function problematic: all functions are easy for someone. Yet, upon reflection, one
recognizes that measuring the difficulty of a function depends upon the perspective
of a problem solver.

We next consider the case where all agents rely on the same perspective but use
different heuristics. We state two claims here. The first states that with enough
diversity in heuristics, the optimal solution to a problem can always be guaranteed.
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Claim 5 Given a value function V and a common perspective M , there exists a set
of problem solvers possessing different heuristics which locate the optimal solution
irrespective of the starting point.

pf: Let each agent’s set of heuristic consist of a single flip set. Assume that there are
2n − 1 number of agents and each possesses a unique heuristic. The result follows.

The proof above is somewhat unsatisfying in that it relies on checking every pos-
sible solution. We now prove a stronger result which borrows results from Page
(1995,1996). He constructs two measures of difficulty for functions defined over bi-
nary strings based upon cover theory. The first of these measures, cover size, captures
the difficulty of solving a problem in parallel. The second measure, ascent size, cap-
tures the difficulty of solving a problem using a hillclimbing (or ascent) algorithm.
The second of these measures is more appropriate for the analysis considered here.
Essentially, a problem has an ascent size of one for a perspective iff the elementary
heuristic has a unique local optimum which is the global optimum. It has an ascent
size of two iff the global optimum is located as long as the combined set of heuristics
contains all individual bit flips and all pairs of bit flips. An ascent size of k means
that a collection of agents whose flipsets contain all sets of k bits or less will locate
the optimal solution.

A problem is considered easy if the ascent size equals one and difficult as the ascent
size approaches n, the number of bits.10 Thus, ascent size can be interpreted roughly
as the appropriateness of a perspective. The smaller the ascent size, the better the
perspective for the function.

Claim 6 If a function V has an ascent size of k given the perspective M , then an
upper bound on the minimal number of problem solvers with n flipsets and the common
perspective M is given by

mk = b
∑k
j=1

n!
(n−j)!j!
n

c

where bxc is the least integer greater than x

pf: By assumption the problem has an ascent size of k. Therefore, the only local
optimum relative to flips of k bits or less is the global optimum. The number of
flipsets of size k or less equals:

k∑
j=1

n!

(n− j)!j!

Therefore, mk gives an upper bound on the minimal number of problem solvers
needed.

10Ascent size can also be measured relative to upper contour sets. Page (1995b) shows that as
the function value improves, the ascent size weakly decreases.
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The reason that mk is an upper bound is that not all of the flipsets may be
necessary. Some subset of flipsets may be sufficient to locate the optimum. An
implication of the claim is that as problems become harder more problems solvers are
needed to guarantee locating the optimum.

7 Problem Solving Firms

In Section 2, we presented data showing an increasing number of people who solve
problems as part of their work. A natural question to ask is whether constant, de-
creasing, or increasing marginal returns would hold for problem solving firms. Any
insights into how the expected value of local optima located by a group of problem
solvers varies with the number of problem solvers in the group would be of economic
importance.

Although casual intuition suggests that problem solving would yield decreasing
returns to additional problem solvers, several provocative insights emerge from our
analysis which lead us to question such a conclusion. First, we find that any “pro-
duction” function is possible. By this we mean, given any nondecreasing function f
defined over a finite set of integers, we can construct a value function and a group of
problem solvers that generate f when sequentially applied. Second, we can construct
value functions and problem solvers of equal ability who generate both increasing
and decreasing returns to scale depending upon the order that they are applied to
the problem. That two individuals have equal ability means that the expected value
of local optima reached by either of the individuals alone is the same.

These results establish the possibility of these phenomena but do not address their
likelihood. In this way, they are similar to the findings of Sonnenschein (1973), Mantel
(1974), and Debreu (1974) that show the possibility of any aggregate excess demand
function. To generate their results, they manipulate income effects. We manipulate
local optima and the basins of attraction of the various problem solvers to construct
similarly counterintuitive results. Our results, though nonstandard, should not be
interpreted negatively. Instead, they should be seen as suggestive that problem solving
has less regularity than manufacturing. To generate decreasing returns to adding
problem solvers, we derive one set of sufficient conditions. It requires that a priori none
of the problem solvers has any insight into the problem at hand. Such an assumption
runs counter to basic economic intuition. To remain in existence, problem solving
firms must confront problems for which their employees have some expertise. Within
the context of our model this expertise takes the form of perspective/heuristic pairs
for which the set of local optima is small and of high average value. Unfortunately,
problem specific knowledge creates the possibility for interesting irregular phenomena
such as those that we prove exist below: anything can happen; order can determine
the returns to additional workers. Again, we want to be careful not to over interpret
our findings. We feel that some confidence can be attached to the idea that problem
solving firms have less regularity in their marginal products of labor. Whereas a
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producer of automobiles knows with great precision how many additional cars are
produced if additional workers are hired, a software development firm or a movie
studio, has less certainty in the value added from adding problem solvers.

7.1 Group Problem Solving

For problem solving firms, the goal is to locate solutions with the highest values.
Given a value function, we measure the output of a problem solving firm consisting
of a group of problem solvers by the expected value of local optima for the group.
This performance measurement depends on the way we model how each individual
searches for a solution and how a group works together to search for a solution. We
first look at individuals. Each problem solver applies her flipsets sequentially. Any
time she obtains an improvement, she updates the status quo.

Def’n: Let σ ∈ Σ({1, 2, ..., m}), where Σ({1, 2, ..., m}) is the set of permutations on
the set {1, 2, ..., m}. The outcome of the search by problem solver P = (M, A),
where A = {φ1, φ2, ..., φm}, applying flipsets to an initial object string s in the order
of φσ(1), φσ(2), ..., φσ(m), denoted by Aσ(s, M), is defined as follows:

Step 1: a = 0, t = 0, s′ = M(s)

Step 2: t = t + 1, st = s′

Step 3: If t > m and st−m = st then go to Step 6 else go to Step 4

Step 4: Let a = a + 1. If a > m then let a = 1

Step 5: If V (M−1(φσ(a)(s
t))) > V (M−1(st)) then s′ = φσ(a)(s

t)
else s′ = st. Go to Step 2

Step 6: Aσ(s, M) = M−1(s′). End.

Def’n: The expected value of local optima for problem solver P = (M, A), where
A = {φ1, φ2, ..., φm}, is

E[V : P ] = E[V (Aσ(s, M)) : s ∈ S, σ ∈ Σ({1, 2, ..., m})]

where s and σ are drawn independently according to uniform distributions on S and
Σ({1, 2, ..., m}) respectively.

When a group of problem solvers work together, they could apply their heuristics
sequentially or simultaneously. Either case results in path dependence of outcomes
except in special cases such as unique local optima. Though path dependence implies
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that different rules may yield different expected values, the rule chosen does not ap-
pear to be that important qualitatively for our purposes. The claims below hold for
several alternative and equally plausible descriptions of group behavior. For mathe-
matical convenience, we assume that a group of problem solvers act sequentially. The
first problem solver applies her heuristic until reaching a local maximum. The second
problem solver then joins the first problem solver. Together, the two act as a single
problem solver. When that subgroup has located a local maximum, the next problem
solver joins, and the three act as a single problem solver.

Let {Pj}ij=1 where i > 1 be a group of problem solvers. For each j ∈ {1, ..., i},
Pj = (Mj, Aj) where Aj = {φj1, φj2, ..., φjmj}. For any {φh1gh1

, φh2gh2
, ..., φhlghl}, a

subset of ∪ij=1Aj, ha ∈ {1, ..., i} and gha ∈ {1, ..., mha} for any 1 ≤ a ≤ l,

Def’n: The outcome of a search by problem solvers {Pj}ij=1 applying their flipsets
{φh1gh1

, φh2gh2
, ..., φhlghl} to an initial object string s in exactly that order is defined

by the following steps:

Step 1: a = 0, t = 0, s′ = s

Step 2: t = t + 1, st = s′

Step 3: If t > l and st−l = st then go to Step 6 else go to Step 4

Step 4: a = a + 1 if a > l then a = 1

Step 5: If V (M−1
ha

(φhagha (Mha(s
t)))) > V (st),

then s′ = M−1
ha

(φhagha (Mha(s
t))) else s′ = st. Go to Step 2

Step 6: Outcome = s′. End.

In the following definition, for any 1 ≤ k ≤ i, σk ∈ Σ(Ik) where Σ(Ik) denotes the
set of permutations on Ik and Ik = ∪kj=1{j1, ..., jmj}, and Uσk

k (s) denotes the outcome
of the search by problem solvers applying {φσk(11), ..., φσk(1m1), ..., φσk(k1), ..., φσk(kmk)}
to s in that order.

Def’n: The expected value of local optima for the group of problem solvers
{Pj}ij=1 where i > 1

E[V : {Pj}ij=1] = E[V (Uσi
i (...Uσ2

2 (Uσ1
1 (s))...) : s ∈ S and σk ∈ Σ(Ik) for 1 ≤ k ≤ i]

where s and σk’s are drawn independently according to uniform distributions on S
and Σ(Ik)’s respectively.

By defining group problem solving in this way, we can compute the marginal value
of adding problem solvers, in standard economic language, the marginal product of
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problem solvers (MPPS). Given our assumption that problem solvers differ, no general
MPPS exists per se. Each problem solver creates her own increase to total product
which depends upon the other problem solvers hired previously. Formally we would
have to write MPPS(i, J), where i is the problem solver, and J is the set of problem
solvers previously hired. To keep notation at a minimum, we shall speak of returns
to adding problem solvers when discussing MPPS(i, J).

7.2 Returns to Additional Problem Solvers

Our next claim states that we can find a group of employees and a value function
such that if the employees are hired in one order the returns to additional problem
solvers are decreasing, and if they are hired in another order, the returns to additional
problem solvers are increasing. This would not be a surprising result if the problem
solvers differed in their abilities. Hiring smarter (dumber) workers first would create
decreasing (increasing) returns. However, in our result, all problem solvers have equal
ability as measured by their expected value of local maxima.

There are several ways to cast this counter-intuitive result. We first provide an
example where order matters. In this example, each new worker can escape one of
the local optima. The order determines where the former local optima go. In one
order, the former local optima lie in the basin of attraction of the optimal object
which has a drastically higher value. Therefore, the returns to additional workers
are linear. In another order the former local optima lie in the basins of attraction of
local optima with only slightly higher values. In this case, the returns to additional
problem solvers are small until the last problem solver is added. The return to the
last problem solver is very large, so the returns to scale increase.

Example: n = 6, the number of problem solvers m = 22. All problem solvers use
the elementary heuristic but they have different perspectives. All but 23 strings have
values equal to zero. We denote these by xi for i = 0 to 22. The value of x0 is 1 and
the value of string xi is i ·ε for i = 1 to 22 where ε is a very small but positive number.
The strings with exactly three ones, of which there are twenty, play a prominent role
in this example. Let s3

k where k = 2 to 21 denote these twenty strings.
We write problem solver 22’s perspective as follows:

M22(x0) = 111111
M22(x1) = 000000
M22(xk) = s3

k for k = 2 to 21
M22(x22) = 111110

Problem solver j for j = 1 to 21 has the perspective:

Mj(x0) = 000000
Mj(xj) = 111110

23



Mj(xj+1) = 111111
Mj(xbj+kc) = s3

k for k = 2 to 21 where bj + kc = (j + k) mod 22.

We can construct the following probability table for reaching the xi’s

Probability of Local Optimum (over 640)
a = either 24 or 25 below

PS x1 x2 x3 x4 x5 x10 x11 x20 x21 x22 x0

dir → → → → → → → → → → sink
22 70 a a a a a a a a 0 80
21 a a a a a a a a 0 80 70
20 a a a a a a a 0 80 a 70
· · · · · · · · · · · ·
3 a a 0 80 a a a a a a 70
2 a 0 80 a a a a a a a 70
1 0 80 a a a a a a a a 70

Consider the order P1,P2. There is only a small increase until problem solver 22
is added at which point there is a huge increase. Therefore, the returns to additional
workers are increasing. If the order is changed to P22,P21 then there is a large “lin-
ear” increase with the addition of each worker. The returns to additional workers is
approximately constant.

We can now state the formal claim. The proof is constructive. Here the example
differs in that the different problem solvers get rid of different numbers of local optima.
Each former local optima is mapped into the global optimum.

Claim 7 For any m ≥ 3, there exist an n ≥ 1, a group of problem solvers {Pi}mi=1,
a value function V defined on binary strings of length n, and σ, σ

′
, two elements of

the permutation group on {1, ..., m}, such that (i),(ii), and (iii) hold:

(i)
E[V : {Pσ(j)}ij=1]− E[V : {Pσ(j)}i−1

j=1] ≥ E[V : {Pσ(j)}i−1
j=1]− E[V : {Pσ(j)}i−2

j=1]
for i = 3, ..., m

(ii)
E[V : {Pσ′ (j)}ij=1]− E[V : {Pσ′ (j)}i−1

j=1] ≤ E[V : {Pσ′ (j)}i−1
j=1]− E[V : {Pσ′ (j)}i−2

j=1]

for i = 3, ..., m

(iii) E[V : Pi] = E[V : Pj] for all i, j = 1, ..., m

pf: In the proof we refer to the case m = 5 as a benchmark. Choose n = 1 + 2 +
... + (m− 1) = m·(m−1)

2
. When m = 5, n = 10 – the sum of the integers 1 through 4.
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The domain of the value function consists of 2n object strings. Let one object string
have a value of 1, 2n objects have a value of -1 and all other object strings have a
value of -2. Assume that every problem solver uses the elementary heuristic. The
perspectives for the agents are as follows. Let x1 through x2n denote the 2n object
strings with value -1 and x0 denote the object string of value 1.

Let s0 denote the string of all zeroes. We assume that all agents encode x0 as
s0. Let s1i for i = 1 to n denote the n strings with exactly one bit whose value is
not equal to 1, and let s0j for j = 1 to n denote the n strings with exactly one bit
whose value is not 0. The key to the proof is to notice that the s0j’s lie in the basin
of attraction of the optimal string s0, while the s1i’s are local optima with respect to
the elementary heuristic.

In each of the m problem solver’s perspective, these 2n strings denote the 2n
object strings of value -1. The perspectives only differ in their mappings from the
xi’s to the s1i’s and the s0j’s. Define the perspective of the mth problem solver as
follows:

Mm(xi) =

{
s1i for i = 1 to n
s0(i−n) for i = n + 1 to 2n

In the case of m = 5, the globally optimal object, x0 and the ten objects x1 to x10

are local optima for the fifth problem solver. Other local optima all have value -2.
In what follows, each problem solver has the same local optima which have value -2.
They affect the expected value in exactly the same way for each problem solver and
each group of problem solvers. For ease of exposition, we don’t keep track of them
specifically.

We need one more piece of notation. For k = 1 to m− 1, let Σk be the sum of the
integers from 1 through k. Define the perspective of problem solver 1 as follows:

M1(x
i) =


s0i for i = 1 to Σ1

s1(i−Σ1) for i = Σ1 + 1 to Σ1 + n
s0(i−n) for i = Σ1 + n + 1 to 2n

Therefore, in the case m = 5, the local optima for problem solver 1 are {x0, x2, x3,
x4, x5, x6, x7, x8, x9, x10, x11}. The set of local optima for the group consisting
of problem solver 1 and problem solver 5 consists of x0 and x2 through x10. The
perspectives of problem solvers k for k = 2 to m− 1 are defined as follows:

Mk(x
i) =


s1i for i = 1 to Σk−1

s0(i−Σk−1) for i = Σk−1 + 1 to Σk

s1(i−k) for i = Σk + 1 to k + n
s0(i−n) for i = k + n + 1 to 2n

In the m = 5 case, the local optima for problem solvers 2 and 3 respectively are {x0,
x1, x4, x5, x6, x7, x8, x9, x10, x11, x12} and {x0, x1, x2, x3, x7, x8, x9, x10, x11, x12,
x13}. These sets provide the basis for the proof. When problem solver 2 is added to
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the group consisting of problem solvers 1 and 5, the set of local optima for the group
is reduced by two. And when problem solver 3 is added to the group consisting of
problem solvers 1,2, and 5, the set of local optima for the group is reduced by three.
Note that the reduction of each such local optimum increases the expected value by
the same amount. Denote this amount by δ. Obviously δ > 0. If the order in which
problem solvers are added to the group is 5,1,2,3,4, then the expected value of adding
problem solver i equals i ·δ. So, we have increasing returns to adding problem solvers.
But by construction, if the order in which the problem solvers are added to the group
is 5,4,3,2,1, then the expected value of adding problem solver i is still i · δ and we
have decreasing returns to adding problem solvers. All that remains to see is that the
expected value of local optima for each problem solver is the same. But this follows
immediately by construction.

We omit the proof of the claim for a general m as it follows the m = 5 case exactly.

The next claim states that for any nondecreasing function defined over the first
m integers there exist a value function, a set of problem solvers of equal ability and
an order which generates the function. This implies that arbitrary returns to adding
problem solvers are possible even if the problem solvers have equal ability.

Claim 8 For any m ≥ 2 and any function f : {1, 2, ..., m} → Q (Q denotes the set
of rational numbers) which is weakly increasing with f(1) = 0 and f(m) = 1, there
exist an n ≥ 1, a value function V : {0, 1}n → <, and problem solvers {Pi}mi=1 such
that E[V : {Pi}ji=1] = f(j) for j = 1 to m and that E[V : Pi] = E[V : Pj] for all i
and j.

pf: We assume a strictly increasing function. The weakly increasing case follows
immediately by adding problem solvers identical to earlier problem solvers. Let ℵ be
the set of positive integers. For i = 2, ..., m, let d(i) = f(i)− f(i− 1). We define n as
follows:

n = 3 ·min{x : x ∈ ℵ, ∃ki ∈ ℵ s.t.
ki
x

= d(i) for all i = 2, ..., m}

The construction of the value function is very similar to that used in the proof of
Claim ??. The domain of the value function consists of 2n object strings. As before,
let s0 denote the string of all 0’s, s1 denote the string of all 1’s, s1i’s for i = 1, ..., n
denote n strings with exactly one bit 0, and s0j’s for j = 1, ..., n denote n strings with
exactly one bit 1. For each object string s, we define the value function V : S → <
as follows:

V (s) =


1 for s = s0

−2 for s = s1

−min (Σn
j=1sj, n− Σn

j=1sj) for s 6= s0, s1

As before, we denote object strings s1i’s for i = 1, ..., n by x1 through xn and object
strings s0j’s for j = 1, ..., n by xn+1 through x2n. By the definition of the value
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function V above, V (xi) = −1 for i = 1 to 2n. The m problem solvers we are going
to define all use the elementary heuristic. Their perspectives differ only in the way
they encode object strings x1 through x2n. They are defined below. For k = 2, ..., m,
let Σk = nf(k).

M1(x
i) =

{
s1i for i = 1 to n
s0(i−n) for i = n + 1 to 2n

M2(x
i) =


s0i for i = 1 to Σ2

s1(i−Σ2) for i = Σ2 + 1 to Σ2 + n
s0(i−n) for i = Σ2 + n + 1 to 2n

For k = 3, ..., m,

Mk(x
i) =


s1i for i = 1 to Σk−1

s0(i−Σk−1) for i = Σk−1 + 1 to Σk

s1(i−Σk+Σk−1) for i = Σk + 1 to Σk − Σk−1 + n
s0(i−n) for i = Σk − Σk−1 + n + 1 to 2n

For each problem solver k = 1, ..., m, the set of local optima consists of s0 and s1i’s
for i = 1, ..., n, strings here are Mk-strings. By simple calculation, the probability of
the search ending at a given s1i is 1

2n
and the probability of the search ending at s0

is 1
2
.. Therefore, we have E[V : Pi] = E[V : Pj] = 0 for all i and j. In particular,

E[V : P1] = 0 = f(1). A straightforward calculation shows that the expected value of
a local optima for problem solvers 1 and 2 equals 0 + Σ2

n
= f(2). Similarly, for j = 3

to m, E[V : {Pi}ji=1] = f(j − 1) + Σj−Σj−1

2n
· 2 = f(j).

7.3 Maximally Difficult Functions

The previous results rely on constructive proofs. As we pointed out earlier, they
demonstrate the possibility of irregularity in marginal products of labor in problem
solving but they do not indicate the likelihood of such phenomena. They do not
say what happens on average. Herein lies a difficulty. If we consider “on average”
to be the expected performance of agents solving a value function that is randomly
drawn from the space of all functions using a uniform prior, then it is as if the agents
are facing a maximally difficult function. A maximally difficult function has random
values from the problem solver’s perspective (Macken, Hagan and Perelson 1990).
Equivalently,

Def’n: A function V is maximally difficult for a problem solver P = (M, A) if
the problem solver’s perspective is a randomly chosen one to one map from the binary
strings of length n onto themselves.

If a function is maximally difficult for a problem solver, then the problem solver has
no insight or understanding of the problem.
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Claim 9 If a function V , taking values in [0,1], is maximally difficult for each prob-
lem solver among a group of m problem solvers with identical perspectives, identical
number of flipsets in each agent’s heuristic and that are maximally diverse, the ex-
pected value of local maxima is 1 − θ

m
, where θ is some constant. (See Section 4 for

the definition of a group of problem solvers being maximally diverse.)

pf: See Macken, Hagan and Perelson (1990).

It follows immediately from the proof of the claim above that a group of maximally
diverse problem solvers do better on a maximally difficult problem than another group
with the same feature except that problem solvers are not maximally diverse. This
states that on average maximally diverse groups perform better. It does not imply
that they always do better as evidenced by the following example.

Example: Consider the following value function V : {0, 1, 2, 3, 4, 5, 6, 7} → <:

V (0) V (1) V (2) V (3) V (4) V (5) V (6) V (7)
20 60 80 50 40 30 70 90

Suppose that there are two groups of agents trying to locate the maximum of the
value function. Let group a consist of P1 and P2 and group b consist of P3 and
P4, where P1 = (I, A1), P2 = (I, A2), P3 = (I, AE), and P4 = (I, A4). Let A1 =
{{1, 2, 3}, {1, 2}, {1, 3}}, A2 = {{3}, {1, 2}, {2, 3}}, and A4 = {{1, 2, 3}, {1, 2}, {2, 3}}.

Given these perspectives and heuristics of the agents, it can easily been verified
that (1) 4(P1, P2) = 4 and 4(P3, P4) = 6, so that group b is maximally diverse but
group a is not; (2) Group a (P1 and P2 together) can always locate the global maxi-
mum; (3) Group b (P3 and P4 together) can not always locate the global maximum,
for example, the object string 2 (which has a value of 80) is a local maximum for
both P3 and P4. Therefore, E[V : P3, P4] < E[V : P1, P2] = 90.

To summarize, if, on average, agents have no insights into problems they try to
solve, their average performance can be represented by their performance on solving a
maximally difficult function. This makes little economic sense. People sort into pro-
fessions according to their abilities. Thus, problem solvers should have some insight,
intuition, or experience which enables them to perceive problems and choose heuris-
tics which outperform random draws. Therefore, the problems they attack should not
be maximally difficult for them. Moreover, the problems should not be easy either.
Problem solvers should not be so intelligent as to be able to locate optimal solu-
tions to problems single handedly. The problems of most relevance to our analysis
should belong to the interesting “in between”. Non difficult problems can be solved
using calculus and maximally difficult problems can be solved using probability and
measure theory. When a problem is difficult, but has some exploitable structures,
mathematical models are more difficult to construct.
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8 Discussion

In this paper we have constructed a model of economic agents of diverse problem
solving behavior. The model distinguishes between perspectives, how people encode
problems, and heuristics, how they go about trying to solve them. We have concen-
trated on a binary string model within this general framework. Using the binary string
model, we show the benefit of explicitly modelling perspectives: adding perspectives
significantly enlarges the possibility for diversity. Our finding – that diversity leads
to optimality – should delight many economists. Collectively agents of limited ability
can solve very difficult problems. We also show that the path to optimality may
not possess much regularity vis a vis the returns. We demonstrate the possibility
of arbitrary returns to adding workers of equal ability, and the possibility of both
increasing and decreasing returns to additional workers with the same set of equal-
ability workers. Taken together these results suggest a lack of regularity in returns
to adding problem solvers. Empirically, we may expect to see problem solving firms
having greater variation in performance.

One obvious question to ask is what happens on average. Would not the local
nonconvexities average out? Moreover, doesn’t simple logic argue that eventually
the returns to additional problem solvers diminish? The second question is valid
but moot. By the time a firm can be certain that additional problem solvers will
make no improvements, the firm has probably already hired too many. The first
question requires a careful answer. Firms producing software, movies, consulting
reports, drugs, and legal cases may not have many discrete outputs. Averaging may
be over only one or two instances. If so, the implications of our findings stand.
The implication being that if a firm solves big problems rarely, then anything could
happen. If the firm solves many small problems, some averaging may occur. However,
if the problems are similar, people obtain credit according to where they are in the
hierarchy.

The interpretations so far have been limited to human problem solvers. Yet,
the perspective/heuristic framework can equally well be applied to artificial problem
solvers, such as computers. The mapping between our heuristics and computer al-
gorithms is obvious. Further, computer searches rely on perspectives. To apply an
algorithm to a problem, the problem must be encoded into a language that is natural
for the computer. Two distinct computer algorithms may use identical or unique
encoding. In carrying out this mental exercise of modelling computers within our
framework, a difference between humans and computers becomes evident. Humans
possess common languages and enormous powers of visual interpretation which sim-
plify communication. If people differ in their perspectives, and there would appear to
be little basis for supposing that we all encode information identically, then the ability
to immediately encode visual stimuli offers an opportunity for the exploitation of this
diversity. For computers, the use of diverse perspectives can be problematic. When
a new best object is located by one computer, in order for the other computer to be
informed of the object’s identity, a look-up table must be consulted. This look-up
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table translates the object from one encoding into the other. Each look-up demands
nontrivial computer time unless the encoding are related by some simple formula.11

A potential criticism of the theoretical results contained in this paper is that they
are formulated in a binary string model and not in a more general framework. A
detailed examination of the proofs supports the generalizability of these results. In
order to generate the possibility of any monotonically increasing function as the total
returns to problem solvers, the local optima of the various problem solvers must have
basins of attraction which overlap in a particular way. This can be accomplished with
any type of encoding. The same is true of the finding that order matters. Thus, the
results are in fact quite general. In fact, we have proven them for arbitrary symmetric
graphs. Binary strings happen to provide a convenient language for presenting the
idea.

The current model is by no means complete. We offer it with the intention of
spurring future research. Several extensions are apparent. In its present form the
model does not allow for differences in the problem solvers’ preferences over outcomes.
These differences may stem from different incentives. One problem solver may not
like a particular solution because he must work hard in that situation, or they may
be the result of different beliefs about an uncertain world. In either case, differences
of opinion introduce a cost to increasing group size. Similarly, were we to include
the possibility of miscommunication, this might bound the effective size of a group.
Miscommunication might also offer an occasional improvement by dislodging search
from local optima. Such modifications in the present model may enable us to generate
insights about a variety of interesting questions including optimal group size as a
function of problem difficulty.

11If one encoding can be changed to another using a shortcut, then the analysis of this paper
suggests that in fact the second encoding heuristic pair is probably equivalent to the first encoding
with some other heuristic. Also, note that another difference between human and artificial problem
solvers stems from the endogeneity of perspectives and heuristics. Humans may have almost no
flexibility in their choice of perspectives and only limited range over their choice of heuristics.
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Appendix 1

In this appendix, we describe the sources of our data on the job classification of the
workforce in years 1950, 1970 and 1992 and list in detail jobs that we categorize under
the heading problem solvers.

The data for 1950 are from The Statistical History of the United States published
in 1976. The data for 1970 and 1992 are from Statistical Abstract of the United States
published in 1975 and 1993 respectively. The job classification changes from year to
year. The 1950 data we use are according to 1960 classification provided in the above
mentioned source.

Following is the list of jobs we include in the category of problem solvers:

• Problem Solvers

Executive, Administrative, and Managerial Specialty

officials and Administrators, public

financial managers

personnel and labor relations managers

purchasing managers

managers, marketing, advertising and public relations

administrators, education and related fields

managers, medicine and health

managers, properties and real estate

management related occupations such as accountants and auditors

Professional Specialty

architects

engineers

mathematical and computer scientists

computer Programmers

natural scientists such as chemists and biological scientists

health diagnosing occupations such as physicians and dentists

social scientists and urban planners

lawyers and judges

designers

public relations specialists
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Appendix 2

In this appendix, we shall prove the three claims in Section 5 regarding equivalence.
A more detailed characterization of combining flipsets is required. If A = {φ1, ..., φm}
and K = {1, 3, 4}, then φK represents a flipset created by applying φ1, followed by
φ3, and finally φ4. For example, if φi = {i, i + 1}, then applying φ{1,3,4} to a string
amounts to flipping the first and the second bits and then flipping the third and the
fourth bits followed by flipping fourth and fifth bits. The strings are defined over a
binary alphabet, so flipping the fourth bit twice is equivalent to not flipping it at all.
Thus, φ{1,3,4} = {1, 2, 3, 5}. To take into account the fact that flipping a bit an even
number of times is the same as not flipping the bit, we define the operator ⊕.

Def’n: The operator ⊕ : ℘({1, 2, ..., m})× ℘({1, 2, ..., m})→ ℘({1, 2, ..., m}) accord-
ing to the following rule: J ⊕K = (J ∪K) \ (J ∩K) for J, K ⊆{1, 2, ..., m} where
℘({1, 2, ..., m}) is the power set of {1, 2, ..., m}.

Example: {1, 3, 4} ⊕ {4, 5} = {1, 3, 5}.

Remark 1 Given any heuristic A = {φ1, ..., φm} and K, J ⊆ {1, 2, ..., m}, φJ(φK(s)) =
φJ⊕K(s) for all s ∈ S.

Claim 1 A perspective/heuristic pair (M, A) is equivalent to (M ′, AK
E ) for some per-

spective M ′ and some K ⊆ {1, 2, ..., n} such that |K| = m iff A⊕ is isomorphic to an
m-dimensional hyperplane of S.

To prove Claim ??, we only need to show the following two lemmas.

Lemma 1 (I, A) is equivalent to (M1, A
K
E ) for some perspective M1 and some K ⊆

{1, 2, ..., n} such that |K| = m iff A⊕ is isomorphic to an m-dimensional hyperplane
of S.

pf: (⇒) It is not difficult to show (we omit it) that M1(A
⊕) = AK⊕

E (M1(s
0)) where

AK⊕
E (M1(s

0)) denotes the set of strings that can be reached from M1(s
0) by applying

flipsets in AK
E individually and in combination. Obviously AK⊕

E (M1(s
0)) is an m-

dimensional hyperplane of S.
(⇐) When A⊕ is isomorphic to an m-dimensional hyperplane of S, it can be shown

that there exists a set of 2n−m number of strings including s0, {s0, s1, ..., s2n−m−1}, s.t.

(a) S = ∪2n−m−1
j=0 A⊕(sj) and A⊕(sj) ∩ A⊕(sk) for any j 6= k where A⊕(sj) denotes

{s ∈ S : s = φJ(s
j) for some J ⊆ {1, ..., m}} (notice A⊕(s0) = A⊕) (b) for any

s ∈ A⊕(sj), there exists a unique subset of {1, ..., m}, denote it J(s), s.t. s = φJ(s)(s
j).

Now we define M1 as follows: for any s ∈ A⊕(sj), M1(s) is the unique string such that
{i ∈ {1, ..., m} : the ith bit of M1(s) differs from the ith bit of sj} = J(s). Let K =
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{1, ..., m}. We can then easily show that for any given s ∈ S, M1(φk(s)) = φek(M1(s))
for any k ∈ {1, ..., m}. Thus (I, A) is equivalent to (M1, A

K
E ).

Lemma 2 (a) If (M, A) is equivalent to (M ′, AK
E ) for some K ⊆ {1, 2, ..., n} such

that |K| = m, then (I, A) is equivalent to (M1, A
K
E ) where M1 = M ′ ◦M−1. (b) If

(I, A) is equivalent to (M1, A
K
E ) for some K ⊆ {1, 2, ..., n} such that |K| = m, then

for any perspective M, (M, A) is equivalent to (M ′, AK
E ) where M ′ = M1 ◦M.

pf: We only prove (a) here, (b) can be similarly proven. To show that (I, A) is
equivalent to (M1, A

K
E ), we need to show for any s ∈ S, there exists a 1-1 map

σ : {1, 2, ..., m} → K such that φk(s) = M−1
1 (φeσ(k)(M1(s))). Fix any s ∈ S, consider

s′ = M−1(s). Since (M, A) is equivalent to (M ′, AK
E ), we know that for s′ there exists

a 1-1 map σ : {1, 2, ..., m} → K such that M−1(φk(M(s′))) = M ′−1(φeσ(k)(M
′(s))).

This implies φk(s) = M−1
1 (φeσ(k)(M1(s))) since s′ = M−1(s) and M1 = M ′ ◦M−1.

Claim ?? is much simpler. It says

Claim 2 There exist a perspective M and a K ⊆ {1, 2, ..., n} with |K| = m s.t.
(M, AK

E ) is not equivalent to (I, A) for any heuristic A.

pf: We construct an example for the case n = m = 3, which can be extended to an
arbitrary n. Consider the perspective M .

s 0 1 2 3 4 5 6 7
M(s) 0 1 2 7 4 5 6 3

We claim that there does not exist a heuristic A s.t. (I, A) is equivalent to (M, AE).
The object string 0 and the object strings 1, 2, and 4 are mapped into themselves
under the perspective M . Strings 1,2, and 4 are the neighbors of string 0 using the
elementary heuristic. Therefore, if (I, A) is equivalent to (M, AE), the neighbors of
object string 0 must be object strings 1,2, and 4, and A must be the elementary
heuristic. But I and the elementary heuristic together is not equivalent to (M, AE).

For each problem to be solved, we can look at the number of equivalence classes
among all the problem solvers. Claim ?? helps us to establish a lower bound on the
number of equivalence classes.

Def’n: Π = {(M, A) : M is a perspective and A = {φ1, ..., φm} is a flipset heuristic
such that A⊕ is isomorphic to an m-dimensional hyperplane of S for some m, 1 ≤
m ≤ n}
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Claim 3 The number of equivalence classes is at least

n∑
m=1

2n!

2n−m!(2mm)2n−m

pf: We only need to show that there are
∑n
m=1

2n!

2n−m!(2mm)2n−m many equivalence classes

in Π. By Claim ??, we know that for any P = (M, A) ∈ Π where A = {φ1, ..., φm},
there exists a perspective M ′ : S → S and K ⊆ N with |K| = m such that (M, A)
is equivalent to (M ′, AK

E ) which also belongs to Π. Thus we only need to consider
the number of equivalence classes in {(M, AK

E ) : M is a perspective and K ⊆ N}.
Denote {(M, AK

E ) : M is a perspective and K ⊆ N} by ΠE. Obviously, if |K| 6= |K ′| ,
then for any two perspectives M and M ′, (M, AK

E ) and (M ′, AK′
E ) are not equivalent.

Therefore, the number of equivalence classes in ΠE =
∑n
m=1the number of equivalence

classes in Πm
E , where Πm

E = {(M, AK
E ) : M is a perspective and K ⊆ N with |K| = m}.

The following lemma proven at the end leads to the result.

Lemma 3 Given a perspective M, and K, K ′ ⊆ N such that |K| = |K ′| , there exists
another perspective M ′ such that (M, AK

E ) is equivalent (M ′, AK′
E ).

From Lemma ??, we know that the number of equivalence classes in Πm
E is equal to

the number of equivalent classes in ΠK
E where K ⊆ N and |K| = m is arbitrarily

fixed and ΠK
E = {(M, AK

E ) : M is a perspective}. It can be shown (we leave out the
details) that for any fixed M , there are

(2mm)2n−m(2n−m!)

many (M ′, AK
E )’s that are equivalent to (M, AK

E ). Since there are total of 2n! many
elements in ΠK

E , the number of equivalence classes in ΠK
E is

2n!

2n−m!(2mm)2n−m

Therefore, the number of equivalence classes in Π is

n∑
m=1

2n!

2n−m!(2mm)2n−m

pf of Lemma ??: By Lemma ??, we only need to show that (I, AK
E ) is equivalent

(M ′, AK′
E ) for some perspective M ′. Let σ : N → N be a 1-1 map such that ∀i /∈

(K ∪ K ′)\(K ∩ K ′), σ(i) = i. Define a perspective M ′ as follows: for any s ∈ S,
M ′(s) = sσ(n) · · · sσ(1). Then, it is straightforward to show that (I, AK

E ) is equivalent
(M ′, AK′

E ).
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