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Abstract

In this paper, we construct a general model of diverse problem solvers of limited
abilities. We use this model to derive two main results: (1) a collection of diverse, bounded
problem solvers can locate optimal solutions to difficult problems and (2) a collection of
problem solvers of diverse abilities tends to jointly outperform a collection of high ability
problem solvers, where a problem solver’s ability equals her expected individual performance.

1 Introduction

Humans have limited abilities in solving problems. We suffer from numerous biases, short-
comings, and constraints (Dawes 1988 and Nisbett and Ross 1980). Yet, we often locate
good, or even optimal decisions to difficult, i.e. multi–dimensional and highly nonlinear,
problems. Whether designing products, constructing welfare policies, re–organizing corpora-
tions, performing scientific research, or proving mathematical theorems, people collectively,
either in groups or over time, perform amazingly well. This performance appears to contra-
dict reason: How can people of bounded ability find good, and often optimal solutions to
difficult problems?

In this paper, we demonstrate in a formal model that diversity can resolve the appar-
ent contradiction between boundedly rational problem solvers and optimal decision making.
We construct a model of diverse, boundedly rational problem solvers and analyze this model
both computationally and mathematically, deriving two main results. First, with sufficient
diversity, a collection of bounded problem solvers can locate the optimal solution to difficult
problems. Second, we develop a general theorem providing sufficient conditions for a group
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of the best problem solvers as ranked by individual performance to be collectively outper-
formed by a group of randomly selected problem solvers. This rather surprising result has
an intuitive explanation. If several thousand bounded problem solvers with diverse problem
solving approaches are ranked by their individual abilities, the best problem solvers tend to
take similar approaches. Therefore, the best ten, twenty, or forty problem solvers may not
be effective collectively. In contrast, a collection of randomly selected problem solvers more
likely contains a diversity of approaches, enabling it to locate better solutions.

By a collection of problem solvers, we do not necessarily mean a group of people
sitting in a room together making a joint decision. The problem solvers might also operate
within a hierarchy, where each person works on the problem and passes his solution to the
person above him. We can even interpret the collective performance to be that which would
occur in a market, where problem solving activities are not explicitly coordinated. Whoever
discovers how to improve the steam engine earns economic rents. The ultimate product,
whether it be an automobile, a microwave oven, a movie, or a piece of software, embodies
the efforts of many individuals. Though it is likely that teams, firms, and markets differ
in how they encourage people to locate solutions to problems, we emphasize here that, all
else equal, firms, teams, and markets perform better when they consist of diverse problem
solvers.

What do we mean by diversity? Do we then mean race, profession, gender, or ide-
ology? We mean all of these and yet none of these. Zenisms aside, to us diversity means
differences in problem solvers’ perspectives and heuristics — variations in how people encode
and search for solutions to problems.1 These differences could result from disparate identi-
ties or ideologies, but they need not. And although we distinguish our approach from the
idea that diversity refers to identity differences, i.e. racial, gender, or cultural diversity, we
acknowledge and have sympathy for the idea that these more familiar notions of diversity
may correlate with our formal definition. A Korean woman trained as a biologist probably
frames and approaches a problem differently than an American man trained in materials
science. Our approach extends beyond this, allowing diversity to arise from life experiences.
Two white males from Oconomowoc, Wisconsin trained as engineers may think about how to
design an engine very differently. In sum, diverse agents in our sense probably are more likely
to be diverse in identity as well, though for we consider that to be an empirical question.

Interestingly, empirical research on racially, culturally, and gender diverse work forces
suggests that they may be effective when these traditional identity notions of diversity cor-
relate with diversity as we mean it here. In a recent article on diversity in the workplace,
Thomas and Ely (1996) write that “Diversity should be understood as the varied perspectives
and approaches to work that members of different identity groups bring.”2

Formulating human capital as perspectives and heuristics extends the standard uni-
dimensional conception of ability employed in many human capital models (Becker 1973),

1Economists often use the term diversity to describe heterogeneous preferences. She prefers chicken to
fish. He prefers fish to chicken. Our diversity does not refer to preferences. Similar to McCloud (1996), we
are advocating driving a wedge between behavior and preferences. We borrow the image of the “wedge”
from McCloud.

2The italics are theirs.
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and matching/marriage models (Mortensen 1988). These models focus on how a single vari-
able, IQ for example, determines success (Hernsteinn and Murray 1994). We take a broader
view. We think that economic agents create high value added by being diverse, by bringing
new perspectives and heuristics to a task, not just by possessing raw intelligence. To give
just one example, by focusing on economic incentives, Charles A. Beard, in The Economic
Basis of Politics (1957), led to a new and better understanding of the motivation’s of our
country’s founders. The brilliance of that work stems from its taking a different perspec-
tive, not from its undertaking a deeper, but similar analysis. This example suggests that
the unidimensional ordering of abilities, though useful as a first cut, does not create a suffi-
ciently rich instrument to measure potential contribution. Take, for instance, marriage and
matching models. Ideal partners should possess complementary skills, not merely similar
abilities. Two lawyers with identical perspectives and heuristics may not be of much use to
one another as partners. Neither could ever offer a strategy that the other had not already
considered.

The idea that diverse groups of people find better solutions than do homogeneous
groups appears to have wide acceptance among people who study organizational behavior,
with the caveat that heterogeneous groups perform less effectively at first due to communi-
cation problems (Watson, Kumar, and Michaelsen 1993). The following excerpt was taken
from a well known organizational behavior textbook by Robbins (1994):

When a group is heterogeneous in terms of gender, personalities, opinions, abilities,
skills, and perspectives, there is an increased probability that the group will possess the needed
characteristics to complete its tasks effectively. The group may be more conflict laden and
less expedient as diverse positions are introduced and assimilated, but the evidence generally
supports the conclusion that heterogeneous groups perform more effectively than do those that
are homogeneous. (p 261)

The lack of expediency and potential for conflict lead many participants to think
that groups make worse decisions than individuals. Compounding this impression, in many
groups, participants value outcomes differently, often creating group decisions that appear
suboptimal to group members. Hiring committees often seem to make silly decisions. The
potential for and prevalence of poor decisions by groups may lead some to think that we have
misstated a stylized fact, and that instead groups perform worse than individuals. Regardless
of these preconceptions, the facts speak to the contrary: groups on average outperform
individuals on difficult problems.

The main results of this paper add theoretical foundations for these empirical findings.
Suprisingly, the results were derived analytically prior to us having any knowledge of the
organizational theory literature on diverse groups. The formal model borrows earlier work
on diverse agents (Hong and Page 1997). As mentioned, problem Solvers differ along two
dimensions: their encodings of problems, perspectives, and the algorithms they apply in
searching for solutions, heuristics. Confronted with a problem, a problem solver first encodes
the space of possible solutions, and then applies the heuristics she has acquired during her
lifetime to locate a local optimum. The use of heuristics is widespread in economics. Several
papers define heuristics for game playing automata (Rubenstein 1986 and Kalai and Stanford
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1988).3 These automata may evolve (Miller 1996, Arifovic 1994, or Marimon, McGrattan
and Sargent 1990) or be rationally selected. In our model, a heuristic defines a search
procedure: climb along the gradient, flip a binary variable, etc. Finding a strategy in a game
and attempting to locate a good solution to a problem are similar enterprises. Each requires
search over a multi–variable domain for a good solution to a nonlinear problem. An agent
of bounded abilities, or limited search time, searches by using a heuristic. These heuristics
can become stuck on local optima.

In contrast, our inclusion of diverse perspectives is novel. Standard automata models
assume exogenous and identical perspectives for all agents (Gilboa 1988). Yet in practice,
people differ in how they encode problems. And game theorist vary in how they encode
strategies. Some use neurel nets, some perceptrons, and some Moore machines. These
differences in perspectives can simplify problem solving or make it more difficult. We all
know that switching from Cartesian to polar coordinates can simplify integration in mul-
tiple dimensions. Polar and Cartesian coordinate systems are exactly what we mean by
perspectives.

Central to our analysis is the idea that all people do not perform identically on
difficult problems. On simple problems, they may. But once a problem becomes hard,
diversity appears, creating a link between bounded rationality and diversity. Ironically,
critics of bounded rationality models often cite the plethora of suboptimal, though sensible,
rules which could be applied to a given situation as evidence against a particular rule. They
dismiss bounded rationality models as either ad hoc or unstable. We agree that diversity
abounds, but consider the diversity to be a blessing rather than a curse and explicitly model
problem solvers with a variety of encodings and search rules.

Diversity is a subtle concept. Two problem solvers may have distinct perspectives
and heuristics, yet perform identically on a problem (Hong and Page 1997). Therefore,
perspective–heuristic pairs can be partitioned using an equivalence relation. Diversity, then,
must mean variations in movements in the space of solutions. Diversity of perspectives and
heuristics, though necessary, is not sufficient for differences in final solutions. This begs the
question, why not then simplify the model and consider just movements in solution space?
In fact, in our mathematical analysis, we do just that, abandoning the perspective–heuristic
framework. However, the general model still plays an important role by providing under-
pinnings for diversity. Using the more general model, we can attribute diversity to distinct
encodings of information and unique life experiences that lead to distinct accumulations of
rules of thumb. Unable to rely on diverse perspectives and heuristics, we would be making
ad hoc assumptions about diversity in solution space.

We have two additional motivations for including the full perspective–heuristic model.
First, the mathematical theorems began as conjectures derived from computational experi-
ments. These experiments relied on problem solvers with diverse perspectives and heuristics.
We include two computational experiments in this paper as they provide a more transparent
demonstration of the theory. They also substantiate the mathematical results. The theo-
rems state that there exist an N and an N1 such that the best N1 of N problem solvers do
not perform as well as a random N1 problem solvers. The computational experiments use

3In addition to modeling heuristics with automata, perceptrons have been used (Cho 1993).
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rather small N and N1, in one case N = 60, suggesting that theorems with even weaker
assumptions may be obtainable. In our opinion, the computational experiments should be
interpreted as separate and corroborating support for the intuition that diversity improves
outcomes.

Our second reason for including the full perspective–heuristic model is that it allows us
to distinguish human problem solving diversity from computational problem solving diversity.
Computers and people differ in their abilities to exploit diverse perspectives and diverse
heuristics. Computers have a difficult time communicating across perspectives, something
people can learn to do effectively. In sum, while abandoning the perspective–heuristic model
may be mathematically convenient, doing so would sacrifice intuition and realism.

Any weighty interpretations of our analysis rest upon the existence and relevance of
difficult problems. By a difficult problem, we mean a nonlinear, isolated problem with many
variables (Page 1996).4 The term isolated implies that a problem can be solved independently
of other problems, that the ordinal ranking of a solution does not change when new solutions
to other problems are located. For example, developing an efficient gasoline–combustion
engine is a difficult problem. An engine’s efficiency does not vary depending upon the
pace of progress in other technologies. Similarly, solving a traveling salesperson problem is
difficult, as are developing computer software, producing a movie, and setting airline prices
in some instances.5

The remainder of the paper is organized into four sections. In the next section, we
describe a general model of diverse problem solvers who rely on perspectives and heuristics.
The following section contains two computational models that demonstrate the main formal
results of the paper: that the collective performance of bounded problem solvers can be
optimal and that a group of randomly selected problem solvers can outperform a group of the
best performing problem solvers. The models also highlight the distinction between diverse
perspectives and diverse heuristics. Section 4 contains a finite version of our mathematical
results. The general version is in the appendix. The final section includes applications and
a discussion of possible extensions of our model.

2 A General Model

We assume a finite number of problem solvers of limited ability who attempt to maximize a
value function defined over a set of objects X. The set X can be finite or infinite. All problem
solvers assign the same values to objects as determined by a value function V : X → <.
We assume that each problem solver has an internal language in which she perceives the
objects. This internal language may be interpreted either at the neurological level—our
brains perceive and store information, and these perceptions differ across individuals—or at
the metaphorical level—we interpret problems based on our training as economists, lawyers,
etc. We call the representation of objects in the problem solver’s internal language her

4Information processing problems of the type studied by Radner (1993) and Radner and VanZandt (1995)
are not, in our classification, difficult. They are just big.

5When the ordinal ranking of values can change with the actions of others the problem is complex (Page
and Ryall 1998).
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perspective.

Def’n: A perspective M : R→ Γ, where Γ is the internal language, and R is a subset of
X.

If a perspective is both one to one and defined for all of X, i.e. R = X, and M is
a one to one mapping, then we say that it is a complete perspective. In general there is no
reason to assume that a problem solver’s perspective is complete. A perspective may not be
defined over all of X, i.e. R can be a proper subset of X, in which case an agent has no
internal representation of some objects. Alternatively, a perspective may be many to one,
in which case more than one object are mapped to the same representation in the internal
language.

A problem solver’s heuristic, denoted by A, is a mapping from elements of M(R) in
her internal language to subsets of M(R). Given a γ ∈M(R), A(γ) ⊆M(R) is interpreted
as the set of neighboring objects in the internal representation of the problem solver that
she would check to find an improvement. Let S = M(R). We restrict attention to a
class of heuristics that consists of a collection of functions defined on S. For any j = 1
to m, let fj : S → S be a function. We then define a heuristic A = {f1, ..., fm}, where
A(γ) = {f1(γ), ..., fm(γ)}.

Def’n: A heuristic A = {f1, ..., fm} where fj : S → S for j = 1 to m.

For the moment, we refrain from presenting a precise description of how problem
solvers apply heuristics to problems. We only assume that the heuristic determines those
objects which a problem solver would evaluate given a status quo object. A problem solver
tries each function fj in her heuristic until she can no longer find an improvement. When
she arrives at an object from which she can not find another improvement by applying her
heuristic, this object is her solution to the problem and it is called her local optimum.

Def’n: Given a problem solver (M, A) where A = {f1, ..., fm}, an object x is a local opti-
mum with respect to (M, A), x ∈L((M, A), V ) if and only if V (x) ≥ V (M−1(fj(M(x))))
for all fj ∈ A

Clearly, the set of local optima of an agent depends on both her perspective and her
heuristic.

We have yet to describe how the collection of problem solvers attacks a problem. They
can approach the problem sequentially or simultaneously. For the mathematical results
that we derive later, the precise rule does not matter so long as the final solution lies in
the intersection of the local optima of all the problem solvers. However, in performing
simulations, a fair comparison of groups of problem solvers requires that the two groups
proceed similarly. In the two computational models that we describe in the next section, the
problem solvers attack the problem sequentially. The first problem solver searches until she
attains a local optimum. The second problem solver begins her search at that point. After
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all problem solvers have attempted to locate higher valued objects, the first problem solver
searches again. Search stops only when no problem solver can locate an improvement, i.e.
until the object lies in the intersection of the problem solvers’ local optima.

3 Two Computational Models

We construct two computational models that support the main findings of our mathematical
model: diverse, bounded problem solvers can collectively find good solutions to difficult
problems and groups of random problem solvers outperform groups of the best problem
solvers—those who working alone have the highest expected value from search. The first
model considers problem solvers with diverse perspectives. The second model considers
problem solvers with identical perspectives but diverse heuristics.

3.1 Model 1: Diverse Perspectives in Rn

We assume that there are k problem solvers. These problem solvers are confronted with a
multidimensional problem whose domain is the unit ball in Rn.

f(x) =
n∑
i=1

αi · xi +
n∑

i=j+1

n−1∑
j=1

βij · xi · xj where αi, βij ∈ [−1, 1]

Each problem solver has a perspective: (x1, x2, ..., xn) where xi ∈ Bn , the n dimin-
sional Euclidean ball. A perspective is nothing more than a basis. All problem solvers use
the same heuristic. Each problem solver sequentially searches along the vectors that define
her perspective. Formally, a problem solver’s heuristic consists of movements along each of
these vectors a distance of 0.1 units. Perspectives generate all of the diversity.

In the simulation data shown below, we set n = 30. We performed similar tests
for n varying between ten and one hundred and found similar results. Notice first that
the individuals are not especially good at solving the problems and that even the best
individual performs poorly relative to a simple hillclmbing algorithm or a genetic algorithm.
Collectively, the group of all problem solvers outperforms the genetic algorithm and the
hill climbing algorithm. The computational model demonstrates how a group of bounded,
diverse problem solvers can perform effectively on a difficult problem.

Approach n = 30 Value (s.d)
Individuals 8.1 (0.14)
Best 10.8 (0.18)
Group 14.5 (0.22)
9000 Random 9.7 (0.28)
Hill Climbing 13.3 (0.24)
Genetic Algorithm 14.4 (0.21)
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We next turn to how well collections of the best problem solvers, the worst problem
solvers, and random problem solvers perform. Here, we obtain two surprising findings. First,
on average, the worst twenty find nearly as good of a solution as the best twenty collectively.
Second, twenty random problem solvers outperform the best twenty problem solvers. One
explanation, the one that we propose in this paper, is that the twenty random problem
solvers have more diverse perspectives than do the best twenty problem solvers.

Approach n = 30 Value (s.d)
Individuals 8.1 (0.14)
Best 20 9.5 (0.17)
Worst 20 6.7 (0.14)
Group 14.5 (0.22)
Group Best 20 14.2 (0.23)
Group Worst 20 13.8 (0.22)
Group Random 20 14.3 (0.22)

To test the claim that diversity explains the increase in performance, we could measure
the diversity of the perspectives, but the calculations of diversity become messy, so we
construct a simple model of diverse heuristics that allows for a cleaner analysis.

3.2 Model 2: Diverse Heuristics on a Circle

In this model, a finite set of n objects are encoded as n points on a circle. All problem solvers
use the same perspective, i.e., they have the same encoding of the objects. We assume a
random value function mapping {1, 2, ..., n} into the real numbers. The value of each of the
n points is independently uniformly drawn from the interval [0, 100]. We number the points
consecutively from 1 to n on a circle clockwise, so that point n is to the left of and next to
point 1. The heuristic that a problem solver uses allows her to check k (1 ≤ k < n) positions
that lie within l (1 ≤ l < n) points to the right of the status quo point on the circle.

Example: Let n = 200, k = 3 and l = 12. A problem solver with heuristic (1, 4, 11) starting
at the point 194 would first evaluate point 195 (194+1) and compare it to 194. If point 194
had a higher value, she would then evaluate point 198 (194+4). If point 198 had a higher
value, she would then check point 9 (198+11-200). If that point had a higher value, she then
would evaluate point 10 (9+1). She keeps evaluating until none of her three searches locates
a point with a higher value.

Def’n: The stopping point of a heuristic φ = (φ1, φ2, ..., φk) applied to object m, where
φi ∈ {1, 2, ..., l} and φi 6= φj for i 6= j, denoted by φ(m), is defined as follows:
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Step 1: a = 0, t = 0, ŝ = m

Step 2: t = t + 1, st =ŝ

Step 3: If t > k and st−k = st then go to Step 7 else go to Step 4

Step 4: Let a = a + 1. If a > k, then let a = 1

Step 5 : Let s′ = φa + st. If s′ > n, then let s′ = φa + st − n

Step 6: If V (s′) > V (st), then ŝ = s′, otherwise ŝ = st. Goto Step 2

Step 7: φ(m) = ŝ. End

A heuristic, then, maps a point into a point with a weakly higher value. To compute
the expected value for a problem solver, we start the problem solver at each of the n points
on the circle and compute the average value of the points where search stops.

Def’n: The expected value of a heuristic φ given V ,

E[φ, V ] =
1

n

n∑
i=1

V [φ(i)]

In these computational experiments, we evaluate all heuristics within a well defined
class instead of randomly generating a set of perspectives as we did in the first model.
We restrict the set of heuristics to k movements to the right, where each movement has a
maximum length l. The order that a problem solver applies these movements may matter.
The heuristics (5, 6, 9) and (9, 5, 6) typically have different values. Therefore, we consider
these to be distinct heuristics.6 The total number of unique heuristics equals l · (l− 1) · ·(l−
k + 1). For example, if l = 12 and k = 3, then the total number of heuristics equals 1320.
The 1320 heuristics can be ranked by their expected values.

The diversity of two heuristics φa and φb can be measured either with respect to order
or not. In the first case, we calculate the percentage of φai that equal φbi . In the latter case,
we calculate the percentage of φai that equal φbj for some j. The definitions are formalized
below:

Def’n: The ordered diversity of φa and φb,

O∆(φa, φb) =
k −∑k

i=1 δ(φai , φ
b
i)

k
where δ(φai , φ

b
i) = 1 if φai = φbi and 0 else

6In simulations where we only create one heuristic instead of six for each triple of numbers, we find
identical qualitative results.
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Def’n: The diversity of φa and φb,

∆(φa, φb) =
k −∑k

j=1

∑k
i=1 δ(φai , φ

b
j)

k
where δ(φai , φ

b
j) = 1 if φai = φbj and 0 else

For example, let φa = (5, 6, 9) and φb = (9, 5, 6). Then O∆(φa, φb) = 1 since for any
i ∈ {1, 2, 3}, φai 6= φbi . However, ∆(φa, φb) = 0 since for any i ∈ {1, 2, 3}, φai = φbj for some
j ∈ {1, 2, 3}. It is easy to see that for any two heuristics, the ordered diversity weakly exceeds
the diversity.

In the computational data we report, we set l equal to either twelve or twenty and
set k equal to three. The number of points on the circle n equals two thousand. We
experimented with l varying between six and twenty, k varying between two and seven, and
n varying between two-hundred and ten thousand. Within these parameter ranges, we found
qualitatively similar phenomena.7

The values of each of the two thousand points on the circle were randomly distributed
uniformly in the interval [0, 100]. We ranked all of the possible problem solvers by their
expected values and created two groups, one consisting of the, say ten best problem solvers—
the problem solvers with the highest expected values—and one consisting of ten randomly
chosen problem solvers. The results from a representative single run looked as follows: The
best problem solver had a score of 87.3. The worst problem solver had a score of 84.3. The
average score of the ten best problem solvers was 87.1, and the average score of the ten
randomly selected problem solvers was 85.6. The group performance of the ten best problem
solvers had a value of 93.2, their average diversity was 0.45, and their average ordered
diversity was 0.72. The randomly selected group’s performance was 94.7, their average
diversity was 0.76 and their ordered diversity was 0.92. As in the previous computational
model, the group of random problem solvers collectively performed better. More importantly,
we can now verify that the random group contains more diverse members.8

Below we present data averaged over fifty trials.

Ten Problem Solvers l = 12

Group Composition Group Performance Ordered Diversity Diversity

Best Problem Solvers 92.56 (0.020) 70.98 (0.798) 38.77 (1.59)

Random Problem Solvers 94.53 (0.007) 90.99 (0.232) 75.13 (0.204)

7As the group size becomes large relative to the number of possible problem solvers, the group of the best
agents can outperform a group of randomly selected agents.

8Mathematically, the expected ordered diversity of two randomly selected problem solvers equals 11
12 =

0.9183333. A more elaborate calculation shows that the expected diversity of two randomly selected problem
solvers equals 3

4 = 0.75.
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On average, the group of the random problem solvers significantly outperforms the
group of the best problem solvers. In a typical run, the best problem solver in the population
had an average value of between 86 and 88 in each set of fifty trials and a random problem
solver had a value around two to three points lower. The diversity measures show a striking
difference in the constituency of the two groups. The best group does not have nearly as
much diversity as the random group. Two questions immediately come to mind. First, what
if we enlarge the group size, and second, what if we increase the the set of possible heuristics.

The answer to the first question is that the same phenomenon occurs. The random
group still does better, but with a less pronounced advantage. The group of the best problem
solvers becomes more diverse. This occurs because the set of heuristics is finite and fixed.
The Table below provides data from fifty simulations with groups of size twenty.

Twenty Problem Solvers (l = 12)

Group Composition Performance Ordered Diversity Diversity

Best Problem Solvers 93.78 (0.015) 74.95 (0.425) 44.47 (0.612)

Random Problem Solvers 94.72 (0.005) 91.46 (0.066) 74.88 (0.080)

To answer the second question, we present data from computations where problem
solvers can look up to twenty spots ahead on the circle. Now, the total number of problem
solvers equals 6840. Three predictions come to mind. First, the diversity of the random
group should be greater as a result of the increase in the number of heuristics. Second, this
increased diversity should improve the random group’s performance. And third, the increase
in the number of problem solvers implies that the group of the best problem solvers should
also find a better solution. We see, in fact, that all three occur. The best problem solvers do
better. The random problem solvers do better. And the random problem solvers are more
diverse. The Table below provides data from fifty simulations.

Ten Problem Solvers (l = 20)

Group Composition Performance Ordered Diversity Diversity

Best Problem Solvers 93.52 (0.026) 73.69 (0.843) 44.53 (1.782)

Random Problem Solvers 96.08 (0.006) 94.31 (0.089) 85.17 (0.165)
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4 The Mathematical Model

The two previous computational models demonstrate the benefit of diversity in group and
collective problem solving. In both models, we found that a randomly formed group of prob-
lem solvers often jointly outperforms a group of the best individuals as ranked by expected
value. The explanation substantiated in the second model is that the best problem solvers
are less diverse in their problem solving approaches then are the members of a randomly
selected group. We now construct a mathematical model that provides sufficient conditions
for this result, for a group of randomly selected problem solvers to outperform a group con-
sisting of the problem solvers who perform best individually. We begin with a set of objects
X. The set can be finite, denumerable or a continuum. In the main body of the paper,
we present a model where X is finite and leave the general model to the appendix. The
finite model has been constructed so as to make the insight more obvious. The relationship
between the assumptions and the result is much more subtle in the general proof.

Let X be a finite set of objects and V : X → [0, 1] be a given value function with a
unique maximum at x∗, and V (x∗) = 1. The problem solvers try to locate a solution that
maximizes V , but they have limited abilities. Each problem solver employs a search rule
to search for the maximum but does not always end up at x∗. Suppressing the distinction
between perspectives and heuristics, we characterize each problem solver by a mapping
φ : X → X. We make several assumptions about problem solvers’ mappings. The first is
that the mappings locate higher valued solutions and that the problem is difficult.

Assumption 1

(a) ∀x ∈ X, V (φ(x)) ≥ V (x)

(b) φ(x∗) = x∗

(c) (Difficulty) There exists x ∈ X, such that φ(x) 6= x∗.

The mapping φ has the following interpretation: for each x, φ(x) denotes the local
maximum if the agent starts search at x, that is, it is the stopping point of the search
rule φ applied to x. In this interpretation, search is deterministic, an initial point uniquely
determines a stopping point. The image of the mapping, φ(X), equals the set of local maxima
for problem solver φ.

Next, we define ν to be an initial probability distribution on X that assigns a positive
probability to each x ∈ X.

Assumption 2

ν : X → [0, 1] such that (a) ∀x ∈ X, ν(x) > 0 and (b)
∑
x∈X ν(x) = 1

A problem solver φ begins search by drawing an initial point according to the prob-
ability distribution ν. If the initial point is x, then the search ends at φ(x). We call the
expected value of the search the performance of φ, given ν and V . We denote this expected
value as E(φ, V ). E(φ, V ) =

∑
x∈X V (φ(x))ν(x).

Let Φ denote a collection of problem solvers, a set of φ’s that satisfy Assumption 1.
Notice that because the sets of initial and final points are both finite, that Φ must also be
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finite. The next assumption guarantees a diversity of problem solvers.

Assumption 3 (Diversity)

∀x ∈ X\ {x∗}, ∃φ ∈ Φ such that φ(x) 6= x

This diversity assumption says that there are no solutions other than the global
optimum that are local optima for all of the problem solvers. We next assume a probability
distribution µ on Φ that assigns a positive probability to each φ in Φ.

Assumption 4

µ : Φ→ [0, 1] such that (a) ∀φ ∈ Φ, µ(φ) > 0 and (b)
∑
φ∈Φ µ(φ) = 1

¿From Φ, the set of problem solvers, we select a group of N agents, each agent is
selected independently from Φ according to the probability distribution µ. These N agents
are ordered by their individual performance, E(φ, V ). Choose the best N1 agents. We
compare the joint performance of this group of N1 agents with that of another group of N1

agents which is formed by selecting each from Φ independently according to µ.
We make the following uniqueness assumption before we present the theorem. We

discuss the role this uniqueness assumption plays and its validity after stating and proving
the theorem.

Assumption 5 (Uniqueness)

argmax{E(φ, V ) : φ ∈ Φ} is unique.

Theorem 4.1 Suppose V, Φ, ν, and µ satisfy Assumptions 1 - 5. Then, with probability 1, a
sample path will have the following property: there exist positive integers N and N1, N > N1,
such that the joint performance of the N1 independently drawn problem solvers exceeds the
joint performance of the N1 individually best problem solvers among the group of N agents
independently drawn from Φ according to µ.

Here, there are in fact two independent random events: one is to independently draw
a group of problem solvers and the other is to independently draw a group of problem solvers
and then select a subgroup according to their individual ability. The sample path we speak
of in the theorem is the joint sample path of these two independent events.

The following two ideas are used in the proof. First we show (Lemma 1 below) that for
the first random event of drawing independently a group of problem solvers, with probability
1, the joint performance of the group will asymptotically converge to 1 — the best one can
hope for. This is quite intuitive given that agents are drawn independently thus are very
unlikely to have common local maxima. As the number of agents in the group grows, the
probability of them having common local maxima converges to 0. The second idea uses
the uniqueness assumption to show that in the second random event, with probability 1,
asymptotically there exists a given size such that the subgroup of the best individuals of
that size consists of one type of agents, namely, they are all φ∗ — the unique problem solver
of the highest individual ability in Φ. This establishes an upper bound of a value strictly
less than 1 on the performance of the best group since φ∗ can not always reach the global
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maximum (recall from Assumption 1 that we do not allow any individual problem solver to
always locate the optimum.)

Consider the first random event of forming a group of problem solvers, each problem
solver is independently selected from Φ according to the probability distribution µ. Fix a
sample path of this random event, ω1. Let φ1(ω1), ..., φ

n1(ω1) denote the group of the first n1

problem solvers selected on the sample path ω1. The joint performance of these n1 problem
solvers is the expected value of V (ỹ) where ỹ is a common local maximum of all n1 agents.
The distribution of ỹ is induced by the probability distribution of the initial draw, ν, and
a precise model of how agents work together. Here we want to point out that our theorem
holds for any specifically given model of agents working together. The proof of the theorem
that follows does not depend on a specific model. Without being explicit, we assume that ỹ
follows the probability distribution ηn1

ω1
: X → [0, 1], i.e., for any x ∈ X, Pr(ỹ = x) = ηn1

ω1
(x).

Lemma 1 Pr
{
ω1 : limn1→∞

∑
x∈X V (x)ηn1

ω1
(x) = 1

}
= 1

Proof: Fix any 0 < ε < 1. Define An1 =
{
ω1 : 1−∑x∈X V (x)ηn1

ω1
(x) > ε

}
. Obviously,

An1 ⊆ {ω1 : φ1(ω1), ..., φ
n1(ω1) have common local maxima other than x∗} . Thus,

Pr(An1) ≤ Pr
{
ω1 : φ1(ω1), ..., φ

n1(ω1) have common local maxima other than x∗
}

.

Let m = min {µ(φ) : φ ∈ Φ} . By Assumption 4, m > 0. For any x ∈ X\ {x∗} , we
have µ({φ ∈ Φ : φ(x) = x}) ≤ 1−m. This is because of Assumption 3 that there is at least
one φ in Φ for whom x is not a local maximum.

By independence,

Pr {ω1 : φ1(ω1), ..., φ
n1(ω1) have common local maxima other than x∗}

≤ ∑x∈X\{x∗} Pr {ω1 : x is a common local max of φ1(ω1), ..., φ
n1(ω1)}

≤ ∑x∈X\{x∗}(1−m)n1

≤ (|X| − 1) (1−m)n1

Therefore,
∞∑

n1=1

Pr(An1) =
|X| − 1

m
<∞.

By the Borel-Cantelli Lemma, we have

Pr

{
ω1 : 1−

∑
x∈X

V (x)ηn1
ω1

(x) > ε i.o.

}
= 0

which implies

Pr

{
ω1 : lim

n1→∞

∑
x∈X

V (x)ηn1
ω1

(x) = 1

}
= 1.

We now prove the theorem.

Proof of the theorem: Consider the second random event where a group of n agents
are drawn independently from Φ according to µ and then a subgroup of a given size that
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consists of problem solvers with the best individual abilities among n agents is formed. By
Assumption 5, the uniqueness assumption, there is a unique problem solver in Φ with the
highest individual ability. Call that agent φ∗. By the law of large numbers, we have

Pr

{
ω2 : lim

n→∞
# {i ∈ {1, ..., n} : φi(ω2) = φ∗}

n
= µ(φ∗)

}
= 1.

The fraction in the above expression is the frequency of φ∗ in the draw. Let Ω be the set of
sample paths ω = (ω1, ω2) that have both of the asymptotic properties above, i.e., define

Ω =

ω = (ω1, ω2) :
limn1→∞

∑
x∈X V (x)ηn1

ω1
(x) = 1

and limn→∞
#{i∈{1,...,n}:φi(ω2)=φ∗}

n
= µ(φ∗)


By Lemma 1, we have

Pr(Ω) = 1.

Fix any ω ∈ Ω. Let ε1 = 1 − E(φ∗, V ) which is positive since the perfect agent is excluded
from our consideration and that ν has X as its support. From the first limit above, we know
that there exists an integer n1 > 0 such that for any n1 ≥ n1,∑

x∈X
V (x)ηn1

ω1
(x) > 1− ε1 = E(φ∗, V ).

¿From the second limit above, there exists an integer n > 0 such that for any n ≥ n,

# {i ∈ {1, ..., n} : φi(ω2) = φ∗}
n

>
µ(φ∗)

2
.

Let N1 = n1 and N = max
{

2n1

µ(φ∗) , n
}
. Then

∑
x∈X

V (x)ηN1
ω1

(x) > E(φ∗, V ).

The left hand side of the above inequality is the joint performance of the group of N1

agents independently selected according to µ. We now prove that the right hand side term
is the joint performance of the group of N1 best agents from the group of N agents. By
construction, N ≥ n. Therefore,

# {i ∈ {1, ..., N} : φi(ω2) = φ∗}
N

>
µ(φ∗)

2
.

That is,

#
{
i ∈ {1, ..., N} : φi(ω2) = φ∗

}
>

µ(φ∗)N

2
≥ n1 = N1

since N ≥ 2n1

µ(φ∗) . This means that there are more than N1 numbers of agents among the group
of N agents that are the highest ability agent φ∗. Thus, the best N1 agents among the N
agents are all φ∗. Obviously their joint performance is exactly the same as the performance
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of φ∗ which is E(φ∗, V ). To summarize, for each ω ∈ Ω, there exist N1 and N , N > N1

such that the joint performance of the group of N1 agents independently drawn according
to µ is better than the joint performance of the N1 best agents from the group of N agents
independently drawn according to µ. Since the set Ω has probability 1, the theorem is
proven.

Remark 4.1 The uniqueness assumption plays an important role in the proof. It allows us
to show that as the group size increases, the best subgroup becomes homogeneous, i.e., they
are all the unique best and therefore, they are of no use to each other. This is a stronger
assumption than we need. Suppose instead that there is a set of problem solvers that all
have the highest expected value. All we need is that the intersection of the images of these
problem solvers’ mappings has a cardinality strictly greater than one. Thus, we can replace
Assumption 5 with the following weaker assumption.

Assumption 5′

Problem solvers in argmax{E(φ, V ) : φ ∈ Φ} have a common local maximum not
equal to x∗.

Remark 4.2 We might also ask what assumptions would lead to a violation of the unique-
ness condition? Suppose the value function, V , does not assign unique values to each element
of X. For simplicity, assume that there x′ and x′′ both have the second highest value under
V . Suppose further that the probability distribution ν according to which the initial point of
search is drawn, is the uniform distribution on X. Then, there could be two best problem
solvers: φ∗1 : X → X, who map x′ to itself and maps everything else to x∗, the global op-
timum, and φ∗2 : X → X, who maps x′′ to itself and maps everything else to x∗. Working
together these two agents would always locate the global optimum.

Remark 4.3 The previous example violates the spirit of the difficulty assumption. Difficult
problems should have many, not just two, local optima for each problem solver. Moreover, the
basin of attraction for the global optimum should be small. Problem solvers who are similar
will have sets of local optima that do not differ by much. Diverse agents will tend to have
less overlap in their sets of local optima. This suggests that the diversity assumption can also
be weakened. And, in fact, in the general proof presented in the appendix, we do just that.

5 Discussion and Extensions

The main results of this paper rely on straightforward logic. If people are bounded, they
probably differ in how they solve difficult, i.e. multi-dimensional nonlinear problems. Differ-
ences in perspectives and heuristics enable collections of agents to design particle accelerators,
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pharmaceuticals, and basketball shoes. Being boundedly rational only stifles good decisions
if we are boundedly rational in the same way. If the best problem solvers tend to think about
a problem similarly, then it stands to reason that as a group they may not be very effective.
Random groups may be better owing to their diversity. This paper investigates the strength
of this logic. The computational experiments demonstrate the robustness of the argument,
the finite model describes a set of sufficient conditions, and the general model provides much
weaker sufficient conditions.

If the argument itself seems provocative, the implications are even more so. For
problem solving firms, an employee’s value depends upon her ability to improve decisions.
The diversity of her problem solving approach, as embedded in her perspective–heuristic
pair, relative to the other problem solvers appears to be an important predictor of her value.
It may be even more relevant than her individual expected value on the problem. Though
IQ tests, SAT scores, and college grades may be excellent predictors of raw problem solving
ability, they may not be useful in determining the value added of an employee. Maintaining
a diversity of problem solving approaches may be as, and possibly more important than
hiring people of high individual ability when putting together a group, team, or collection
of problem solvers. Therefore, employers might want to focus on the relative uniqueness of
applicants’ human capital, admittedly something that could prove hard to measure.

The need for a diversity of perspectives and heuristics for firms that solve problems
may in part explain the increased prevalence of consultants (Frank and Cook 1996). Firms
confronting difficult problems may benefit from bringing in outsiders especially if people
within the firm think about problems similarly. Internal group thinking could arise from a
corporate culture. Over time, employees may evolve common perspectives and heuristics.
Group thinking could also arise if the firm hired only the best people because the best
people may tend to think alike. Firms with only a few perspectives, or in extreme cases a
single perspective at their disposal could easily become stuck on local optima, generating
a need for outside consultants. The consultants need not be “smarter” than the firm to
locate improvements. They only need to possess perspectives and heuristics that locate
improvements over the status quo.

The results also speak to the power of markets. If the value of an object equals its
market value and if rents from locating improvements are appropriable, then markets should
lead to improving solutions to economic problems. An agent who locates an improvement to
an economic problem receives a rent. In a market setting, anyone knowing of an improvement
has an incentive to implement it or to sell their idea to someone who will. The diversity
of human perspectives and heuristics implies that no local and non global optimum should
be sustainable. Someone eventually builds a better mousetrap, not because that person is
smarter than anyone who ever contemplated the mousetrap, but because that person sees or
approaches the problem differently. While incentive effects may cause delays in innovations,
eventually any improvement should either come to market or become obsolete.

In contrast, the incentives to implement an improvement may be stifled within a
problem solving firm. A worker may know how to speed up an assembly line, but the decision
may not lie in his problem domain, or the costs of mentioning the improvement may outweigh
the benefits. In cases where the improvement is sufficiently large, the worker may have an
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incentive to create his own competing enterprise, but otherwise, the improvement may never
be implemented. It follows that our theory of optimization based on a common value function
and diverse problem solving approaches also has strong implications for organizational forms
and management styles, especially for problem solving firms such as computer software
companies. In an environment where competition depends on continuous innovation and
introduction of new products, firms with organizational forms that are decentralized and
consist of interdependent confederations of project teams linked by informal communications,
and management styles based on teamwork, openness and participation, should flourish. All
else equal, firms with these organizational forms and management styles take full advantage
of the diverse problem solving approaches of their employees. In a recent book, Saxenian
(1994) documents the superior performance of Silicon Valley firms relative to that of Route
128 firms which she attributes partly to the organizational forms and management styles that
evolved through regional cultural influences. Our paper provides a theoretical underpinning
for such observations.

The ideas put forth in this paper could also be adapted to the study of political
decision making. Throughout, we have assumed that problem solvers have identical ordinal
rankings of the outcomes. In political contexts this is decidedly not the case. Democrats
and Republicans often profess opposing views on tax rates, environmental policy, and welfare
plans. Each party probably has its own value function. Nevertheless, an extended version of
our model would say that the party in power would still benefit from listening to proposals
from the minority party if the minority party has a different perspective and heuristic. Of
course, the potential for the diversity of perspectives and heuristics to be beneficial should
vary with the level of correlation of the value functions.

The current model ignores several important features including incentives, communi-
cation, and learning. Incentives matter for two reasons. They could create diverse preferences
over outcomes: One problem solver may prefer outcome A to outcome B because she ob-
tains higher income under A, or because she does not have to work as hard to achieve A.
And, as we mentioned earlier, incentives may temporarily lead a problem solver to not re-
veal an improvement because she wants a leg up in searching for subsequent improvements.
Revealing a better solution may be informative to competitors. Second, our strong assump-
tion of costless communication reveals another potential extension: the perspective–heuristic
framework could be used to provide micro–foundations for communication costs. Problem
solvers with nearly identical perspectives, but diverse heuristics should communicate with
one another easily. But, problem solvers with diverse perspectives may have trouble un-
derstanding solutions identified by other agents. Firms then may want to hire people with
similar perspectives yet maintain a diversity of heuristics. In this way, the firm can exploit
diversity while minimizing communication costs. Finally, our model also does not allow
problem solvers to learn. Learning could be modeled as the acquisition of new perspectives
and heuristics. Clearly, in a learning model, problem solvers would have incentives to acquire
diverse heuristics and perspectives.
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Appendix
In the appendix, we present a general mathematical model that encompasses the finite

model in the main body of the paper as a special case. Since the discussion in the appendix
is self-contained, the numbering system should not be confused with the numbering system
of the main body of the paper.

Consider a set of objects X. X can be a finite, a denumerable or a continuum set. Let
V : X → [0, 1] be a given value function which has a unique maximum at x∗, and V (x∗) = 1.
Again, we consider problem solvers who have limited ability in trying to maximize V. Each
problem solver employs some kind of search rule to search for the maximum but does not
always end up at x∗. A problem solver is defined by a mapping φ : X → X which satisfies
the following assumptions:

Assumption 1

(a) ∀x ∈ X, V (φ(x)) ≥ V (x)

(b) φ(x∗) = x∗

For each x ∈ X, φ(x) is the local maximum of the problem solver if the search starts
at x. φ(X) is then the set of local optima for problem solver φ. Since X can be a continuum,
we need some technical assumptions.

Let F be a σ-field of X. Let λ be a finite measure of (X,F). Assume that a problem
solver φ also satisfies the following assumption:

Assumption 2

(a) ∀x ∈ X, φ−1(x) ∈ F

(b) φ(X) is countable.

Let Ψ be the set of all problem solvers that satisfy Assumptions 1 and 2. Then it is easy to
show that for any φ1, φ2 ∈ Ψ, {x ∈ X : φ1(x) 6= φ2(x)} ∈ F ..

Problem solvers in Ψ may differ only on a set of λ-measure 0. We want to consider
such problem solvers as the same.

Definition 1 Two problem solvers φ1, φ2 from Ψ are called equivalent if

λ
({

x ∈ X : φ1(x) 6= φ2(x)
})

= 0.

This defines an equivalence relation on Ψ. Consider the quotient space of Ψ with regard to
this equivalence relation. For the rest of the discussion, we are only going to refer to this
quotient space. We therefore still denote it by Ψ without confusion. Ψ refers to any set of
all problem solvers that are not equivalent. We now define a metric on Ψ.
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Definition 2 Define d : Ψ×Ψ→ <+ such that

d(φ1, φ2) = λ
({

x ∈ X : φ1(x) 6= φ2(x)
})

.

Lemma 1 (Φ, d) is a metric space.

Proof: To show that the triangle inequality holds, we only need to notice that

{x ∈ X : φ1(x) 6= φ2(x)}
⊆ {x ∈ X : φ1(x) 6= φ3(x)} ∪ {x ∈ X : φ3(x) 6= φ2(x)} .

Let ν denote a probability measure on (X,F). A problem solver φ starts her search for
the maximum of V by first drawing an initial point according to the probability distribution
ν. The expected value of the search by φ is then defined to be the performance of the
problem solver φ. E(φ, V ) =

∫
X V (φ(x))dν(x).

Assumption 3

ν and λ are mutually absolutely continuous.

Assumption 3 means that sets of ν-measure 0 and sets of λ-measure 0 coincide. Since both
are finite measures, they will be treated exactly the same for our purposes without loss of
generality. For the rest of the discussion, whenever λ appears, it will be replaced by ν.

Lemma 2 E(·, V ) : (Ψ, d) → [0, 1] is uniformly continuous.

Proof: For any φ1, φ2 ∈ Ψ,

|E(φ1, V )− E(φ2, V )|
≤ ∫X |V (φ1(x))− V (φ2(x))| dν(x)
=
∫
{x∈X:φ1(x) 6=φ2(x)} |V (φ1(x))− V (φ2(x))| dν(x)

≤ ν ({x ∈ X : φ1(x) 6= φ2(x)})
= d(φ1, φ2)

The uniform continuity follows.

Let Φ be a compact subset of Ψ that satisfies the following assumption:

Assumption 4

(a) a = sup {V (y) : for y 6= x∗ and y = φ(y) for some φ ∈ Φ} < 1

(b) (Difficulty) There exists a constant p, 0 < p < 1, such that for any φ ∈ Φ, ν ({x ∈ X : φ(x) = x∗}) <
p.
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Assumption 5 (Uniqueness)

There exist φ∗ ∈ Φ and δ > 0 such that for any 0 < δ < δ, E(φ′′, V ) > E(φ′, V ) for any
φ′′ ∈ {φ ∈ Φ : d(φ∗, φ) < δ} and φ′ ∈ {φ ∈ Φ : d(φ∗, φ) ≥ δ} .

Consider E(·, V ). Since it is continuous on Ψ and Φ is a compact subset of Ψ, there is at
least one maximum on Φ for E(·, V ). We are actually assuming slightly more than this. We
need that in addition that there is a small ball around φ∗, the unique maximum, that does
not contain any other local maximum for the function. What we are ruling out is a sequence
of mappings that have values converging to the value of φ∗ that are all local optima.

Let µ be a probability measure on (Φ,B) where B is the set of Borel sets of Φ generated
by the metric d. µ is a measure on the space of problem solvers. Assume

Assumption 6

(a) Every open set of (Φ, d) has positive µ-measure.

(b) (Diversity) There exists a q, 0 < q < 1, and a finite partition of X\{x∗} denoted by
{B1, ..., Bk} s.t. ∀k = 1, ...K,

µ ({φ ∈ Φ : ∃y ∈ Bk, s.t. y = φ(y)}) < q.

The diversity assumption says that the problem space can be partitioned into a finite number
of regions such that the probability of problem solvers who have local maxima in any given
region is bounded away from probability 1.

With this general model, we still have the following theorem:

Theorem 5.1 Suppose V, Φ, ν, and µ satisfy Assumptions 1 - 6. Then, with probability 1, a
sample path will have the following property: there exist positive integers N and N1, N > N1,
such that the joint performance of the N1 problem solvers independently drawn according to
µ exceeds the joint performance of the N1 individually best problem solvers among the group
of N problem solvers independently drawn from Φ according to µ.

The proof of the theorem follows ideas similar to the proof in the finite model. The
details of the proof however are more elaborate given the general nature of the model. We
prove the theorem with the help of two lemmas. Lemma 3 below shows when we draw
problem solvers independently from Ω, that with probability 1, the joint performance of the
problem solvers converges to the global optimum asymptotically. This lemma relies on the
assumption of diversity. The diversity assumption guarantees that the intersection of the
sets of local maxima of the problem solvers shrinks to a point: the global optimum. In
Lemma 4, we establish an upper bound for the joint performance of a group of the best
problem solvers. The proof of this lemma depends heavily on the uniqueness assumption.
From a large enough sample of problem solvers, the best problem solvers all lie near the best
problem solver in d-distance. Therefore, they tend to have similar sets of local maxima.
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In the proof, we consider a randomly formed group of problem solvers and compare
its performance to that of a group of the best solvers. Consider first the random event of
forming a group of problem solvers, each problem solver is independently selected from Φ
according to the probability distribution µ. Fix a sample path of this random event, ω1. Let
φ1(ω1), ..., φ

n1(ω1) denote the group of the first n1 problem solvers selected on the sample
path ω1. The joint performance of these n1 problem solvers is the expected value of V (ỹ)
where ỹ is a common local maximum of all n1 problem solvers. Assume that ỹ follows the
probability distribution ηn1

ω1
. The joint performance of φ1(ω1), ..., φ

n1(ω1) is
∫
X V (x)dηn1

ω1
(x).

Lemma 3 Pr
{
ω1 : limn1→∞

∫
X V (x)dηn1

ω1
(x) = 1

}
= 1

Proof: Fix any 0 < ε < 1. Define An1 =
{
ω1 : 1− ∫X V (x)dηn1

ω1
(x) > ε

}
. Obviously, An1 ⊆

{ω1 : φ1(ω1), ..., φ
n1(ω1) have common local max other than x∗} . Thus,

Pr(An1) ≤ Pr {ω1 : φ1(ω1), ..., φ
n1(ω1) have common local max other than x∗} .

By diversity and independence,

Pr {ω1 : φ1(ω1), ..., φ
n1(ω1) have common local max other than x∗}

≤ ∑K
k=1 Pr {ω1 : φ1(ω1), ..., φ

n1(ω1) have common local max in Bk}
≤ ∑K

k=1 Pr {ω1 : φ1(ω1), ..., φ
n1(ω1) each has local max in Bk}

≤ ∑K
k=1 [µ ({φ ∈ Φ : ∃y ∈ Bk, s.t. y = φ(y)})]n1

≤ Kqn1

Therefore,
∞∑

n1=1

Pr(An1) =
K

1− q
<∞.

By Borel-Cantelli Lemma, we have

Pr
{
ω1 : 1−

∫
X

V (x)dηn1
ω1

(x) > ε i.o.
}

= 0

which implies

Pr
{
ω1 : lim

n1→∞

∫
X

V (x)dηn1
ω1

(x) = 1
}

= 1.

In the next lemma, we give an upper bound for the joint performance of a group of
n problem solvers who are close to each other in d.

Lemma 4 For any ε > 0 and any positive integer n such that (n−1)ε < 1−p (Recall p appears
in Assumption 4), consider any n problem solvers φ1, ..., φn that are within ε d-distance from
each other, i.e. d (φi, φj) < ε for any i, j ∈ {1, ..., n} . Then the joint performance of these n
problem solvers, denoted by E(φ1, ..., φn; V ), is bounded by 1− (1− a)[1− (n− 1)ε− p]. I.e.,

E(φ1, ..., φn; V ) < 1− (1− a)[1− (n− 1)ε− p].

Proof: Suppose the group starts their search at x such that φ1(x) = ... = φn(x) 6= x∗. Then
the search of the group will get stuck at φ1(x) = ... = φn(x) which is a common local max
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of all n problem solvers but is not a global max x∗. We consider the set of such x. If such
set has a positive measure, then the joint performance of these n problem solvers will be less
than 1. Notice that

{x ∈ X : φ1(x) = ... = φn(x) 6= x∗}
= {x ∈ X : φ1(x) = ... = φn(x)}

\ {x ∈ X : φ1(x) = ... = φn(x) = x∗} .

First, since

{x ∈ X : φ1(x) = ... = φn(x)}
= X\ ∪n−1

i=1 {x ∈ X : φ1(x) = ... = φi(x) 6= φi+1(x)}
we have

ν (x ∈ X : φ1(x) = ... = φn(x))
= 1−∑n−1

i=1 ν ({x ∈ X : φ1(x) = ... = φi(x) 6= φi+1(x)})
≥ 1−∑n−1

i=1 ν ({x ∈ X : φ1(x) 6= φi+1(x)})
= 1−∑n−1

i=1 d(φ1, φi+1)
> 1− (n− 1)ε

The last inequality holds since d (φi, φj) < ε for any i, j ∈ {1, ..., n} . Now consider {x ∈ X : φ1(x) = ... =
Since

{x ∈ X : φ1(x) = ... = φn(x) = x∗} ⊆ {x ∈ X : φ1(x) = x∗} ,

we have

ν ({x ∈ X : φ1(x) = ... = φn(x) = x∗})
≤ ν ({x ∈ X : φ1(x) = x∗}) < p.

The last inequality is because of part (b) of Assumption 4. Thus we have

ν ({x ∈ X : φ1(x) = ... = φn(x) 6= x∗})
= ν ({x ∈ X : φ1(x) = ... = φn(x)})

−ν ({x ∈ X : φ1(x) = ... = φn(x) = x∗})
> 1− (n− 1)ε− p > 0

given that (n− 1)ε < 1− p.
Then, the joint performance of this group of n problem solvers has the following

property:

E(φ1, ..., φn; V )
≤ V (x∗) [1− ν ({x ∈ X : φ1(x) = ... = φn(x) 6= x∗})]

+aν ({x ∈ X : φ1(x) = ... = φn(x) 6= x∗})
< 1 · [1− [1− (n− 1)ε− p]] + a · [1− (n− 1)ε− p]
= 1− (1− a)[1− (n− 1)ε− p].

The first inequality holds because the right hand side is the joint performance if (1) whenever
problem solvers end up with different φi(x), they are eventually taken to x∗ (2) whenever
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problem solvers get stuck together, they achieve the highest value for all the local max. Both
assume the most optimism.

Now we prove the theorem using Lemma 3 and Lemma 4.

Proof of the Theorem: Let Ω1 =
{
ω1 : limn1→∞

∫
X V (x)dηn1

ω1
(x) = 1

}
. Let δ be a positive

number such that 0 < δ < (1− p)(1−a). Then for any ω1 ∈ Ω1, there exists n1(ω1) > 1 such
that for any n1 ≥ n1(ω1),

∫
X V (x)dηn1

ω1
(x) > 1− δ.

Let ε(n1(ω1)) = min
{

1
n1(ω1)−1

(
1− p− δ

1−a

)
, δ
}
. Recall that δ is a parameter in the

uniqueness assumption (Assumption 5). Since δ < (1− p)(1− a) and δ > 0, ε(n1(ω1)) > 0.
For any ε > 0, let O(φ∗, ε) = {φ ∈ Φ : d(φ, φ∗) < ε} where φ∗ is the unique best

problem solver in Φ. Since O(φ∗, ε) is open, by part (a) of Assumption 6, µ (O(φ∗, ε)) > 0.

Consider ε = ε(n1(ω1))
2

. Let µ denote µ(O(φ∗, ε(n1(ω1))
2

)). Consider the second random event
mentioned above. Define

Ω2(n1(ω1)) =

ω2 : lim
n→∞

#
{
i ∈ {1, ..., n} : d(φi(ω2), φ

∗) < ε(n1(ω1))
2

}
n

= µ

 .

By the law of large numbers, Pr(Ω2(n1(ω1))) = 1. This is true for every ω1 ∈ Ω1.
Then ∀ω2 ∈ Ω2(n1(ω1)), ∃n > 1 s.t. ∀n ≥ n,

#
{
i ∈ {1, ..., n} : d(φi(ω2), φ

∗) < ε(n1(ω1))
2

}
n

>
µ

2

or equivalently,

#

{
i ∈ {1, ..., n} : d(φi(ω2), φ

∗) <
ε(n1(ω1))

2

}
>

µ

2
· n.

For any ω1 ∈ Ω1 and ω2 ∈ Ω2(n1(ω1)), let N1 = n1(ω1) and N = max
{

2
µ
· n1(ω1), n

}
.

Since N ≥ n, we have

#
{
i ∈ {1, ..., N} : d(φi(ω2), φ

∗) < ε(n1(ω1))
2

}
> µ

2
·N

≥ n1(ω1)
= N1.

This means that among N problem solvers along the path ω2, there are more than N1 problem
solvers who are within ε(n1(ω1))

2
d-distance from φ∗. Since ε(n1(ω1))

2
< ε(n1(ω1)) ≤ δ, by the

uniqueness assumption (Assumption 5), the individual performance of each such problem

solver is strictly better than that of problem solvers who are more than ε(n1(ω1))
2

d-distance
away from φ∗. Therefore, the best N1 problem solvers among the group of N problem solvers
are all strictly within ε(n1(ω1))

2
d-distance from φ∗. By the triangular property of d, these N1

best problem solvers are strictly within ε(n1(ω1)) distance from each other.

By definition, ε(n1(ω1)) ≤ 1
N1−1

(
1− p− δ

1−a

)
. Since δ > 0, we have (N1−1)ε(n1(ω1)) <

1 − p. By Lemma 4, the joint performance of these N1 best problem solvers among those
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N problem solvers is strictly less than 1 − (1 − a)[1 − (N1 − 1)ε(n1(ω1)) − p]. But since

ε(n1(ω1)) ≤ 1
N1−1

(
1− p− δ

1−a

)
, 1− (1− a)[1− (N1 − 1)ε(n1(ω1))− p] ≤ 1− δ. Here notice

that N1 = n1(ω1).
¿From the beginning of the proof, we have

∫
X V (x)dηN1

ω1
(x) > 1 − δ. Thus the joint

performance of the N1 problem solvers along ω1 is better than the joint performance of the
N1 best problem solvers among the group of N problem solvers along ω2.

Let Ω2 = ∩n1(ω1)Ω2(n1(ω1)). Since it is a countable intersection and Pr(Ω2(n1(ω1))) =
1 for each n1(ω1), Pr (Ω2) = 1. Regarding Ω1, by Lemma 3, we have Pr (Ω1) = 1.

To summarize then, we have for any ω1 ∈ Ω1 and ω2 ∈ Ω2, there exist positive integers
N1 and N , N1 < N , such that the joint performance of the N1 problem solvers along ω1

is better than the joint performance of the N1 best problem solvers among the group of N
problem solvers along ω2. Since ω1 and ω2 are independent and Pr (Ω1) = 1 and Pr (Ω2) = 1,
we have Pr (Ω1 × Ω2) = 1.
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