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COMPARISON OF METHODS FOR SOLVING NONLINEAR
FINITE-ELEMENT EQUATIONS IN HEAT TRANSFER

by

G. E. Cort, A. L. Graham, and N. L. Johnson*
Los Alamos National l.aboratory
Los Alamos, NM 87545

ABSTRACT

We have derived two new techniques for solviag the
finite-element heat-transfer equations with highly nonlinear
bounrdary conditions and material properties. When compared
with the more commonly employed successive substitution and
Newton-Raphson procedures, the new methods speed convergence
rates and simultaneously increase the radius of convergence.
We have observed reductions in computation time in excess of
80% when the new techniques are employed. The first method
accelerates the standard Newton-Raphson approach when the
degree of the nonlinearity 1is known (for example, radiation
boundary conditions or a prescribed temperature dependence in
the thermal conductivity). The second technique employs
feedback to regulate the solution algorithm during execution.
Comparisnns of these techniques are given for several practi-
cal examples.

I. INTRODUCT] ON

We have derived two new algorithms for solving heat-transfer equations
with noniinear material properties and boundary conditions. The first tech-
nique accelerates the Newton-Raphson algorithm and the second technique empluys
feedback to reguiate the modified method of successive substitution. The
highly nonlinear finite-element equations for a heat-gencrating solid with
radiation heat loss 4t the surface are used to present the two new convergence

algovithms and to compare them to the more commonly employed Newton-Raphson

*Present address: ODepartment of Chemical Engineering, University of Wisconsin,
Madison, Wl 5.706.



technique and modified method of successive substitution. We have observed
significant improvements in total computing time, ease of use, and radius of
convergence.

This work is part of a continuing effort at the Los Alamos National
Laboratory to develop finitc-element modeling capabilities in problems with
thermal, fluid, and structural interactions [1,2,3].* The numerical techniques
presented here are being tested and have shown themselves to be useful in
dealing with nonlinearities that result from thermal conductivities, heat
generation rates, heat-transfer coefficients, and other combinations of varia-
ble dependent material properties and boundary conditions. The problem in-
volving radiation at solid surfaces is, however, one of the more difficult
nonlinear convergence problems encountered in our work, and adequately illus-
trates the relative advantages and disadvantages of the various techniques.

Section 1] presents the finite-element formulation, and Sections IIl and
I¥ describe the convergence algorithms and the example problems used in this
study. In the final sections, the results of various numerical experiments
are given, and we suggest conditions under which the modified versions appear
to be superior to our original algorithms.

II.  FINITE-ELEMENT FORMULATION FOR A CONDUCTING SOLID

The steady-state energy equation for a nondeforming solid is

3 aT
E(AYEHQ-O. (1)

*Numbers Tn Lrackets designate references at end of paper.



where AY is the thermal conductivity (v = i with no summation implied), Q is
the volumetric heat generation, T is the temperature, and x; s the
coordinate variable in the ith direction. The Einstein summation convention
is assumed in Eq. (1) and will be used throughout this paper.

The method of weighted residuals with the Galerkin approximation is

applied to Eq. (1) to give

/Nil%“\’ %7) +Q‘ Ww = 0, (2)
v J J

where Ni is the ith element interpolation function. To include the radiation

boundary condition, the Green-Gauss theorem is applied to the first term in

Eq. (2) to give

. N.
? al aT Ny oar

/N.-r-(k ——)dV:-/NA—n.dS—/A — — dv, (3)
; 'l.;x‘j YaxJ. : 1Y“j J v Yaxj ax,
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where nj is the jth component of the unit normal of S. The heat transfer at

the surface is described by

aT 4 4
AY-a—x—J-nJ--OC(T -To), (4)
where ¢ 1s the Stefan-Boltzmann constant, ¢ 1s the emissivity of the surface,
and TO is the temperature of the surroundings. In this development, we
assume that there is no radiation between surfaces that constitute S.

I1f Eqs. (3) and (4) are substituted ‘rto Eq. (2) and we use T = Nka,

then Eq. (2) becomes the finite-element equation
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[/ Y?x—ix—dv" /NNoerS} T, /NQdV+/NioeTo ds. (5)

This set of equations has the form
Aik(T) Tk = Bi(T). (6)

Equation (5) was programmed into a finite-eiement code that uses 8-node
isoparametric elements, Gaussian quadrature, and serendipity shape functions.
Additional details about the finite-element formulation may be found
elsewhere [2,3].
II1. NUMERICAL SOLUTION TECHNIQUES

Finding solutions for sets of nonlinear equations is one of the long-
standing and as yet unresclved problems in numerical analysis. Regardless of
which convergence algorithm is employed, one encounters practical systems that
require user intervention with physical insight to converge to an answer.

The basic difficulty is illustrated by Eq. (6), a linearized form of the

energy equation, We have to know the values of tLhe coefficient matrix

(Aij(Tk)) and the “"known" wvector (B,(T, )) to solve for T,» Unfortu-
nately, one must know the answer, Tk' to calculate Aij(Tk) and
Bi(Tk)'

To circumvent this problem, a number of iterative techniques have been
developed. We make no attempt to cover the breadth of this field, but rather
focus on those techniques that offer some special advantage to heav t:ansfer
analysis,

Heat--transfer equations and the associated bhoundary conditions are
continuous and differentiable with respect to the independent variables. In
addition, the derivatives arv often easily evaluated from algebraic expressions

so the bulk of the computing time is not spent in their evaluation.
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Broyden [4] notes that systems in which the above-mentioned criteria
hold are not recommended as candidates for solution by the various quasi-Newton
techniques. As will be discussed in the following sections, we found that
modified Newton-Raphson corcepts and direct successive substitution (the Picard
iteration process) have rather weak convergence characteristics. Consequently,
the paper focuses attention on the four methods that we found solve the heat
transfer equations with highly nonlinear boundary conditions, both rapidly and
with a minimum of user in%ervention.

In this section, we present two widely used numerical techrniques for
solving Eq. (6): the Modified Successive Substitution (MSS) and the Newton-
Raphson (NR). In comparison, we present the two newly developed techniques:
the Regulated Successive Substitution (RSS) and the Accelerated Newton-Raphson
(ANR).

A, Modified Successive Substitution (MSS)

Direct successive substitution (DSS) 1s perhaps the most straightforward

of the algorithms and may be written symboiically from Eq. (6) as

n n+]
AT ) Ty

n

whure Tkn = the estimate of temperatur~ solution at the kth node on the nth
iteration and Tk"+‘ = updated estimate of the solution temperature at node k.
Solutions obtained with DSS oscillate around the true solution and, in many
highly nonlinear problems, they tend to diverge. To dampen the oscillations

and extend the radius of conrvergence, the MS> method is used. [n MSS, Eq. (7)

ntl

K where

is solved with A1k and Bi evaluated at T

T;" - .,Tk", + (1-0),7,‘"'1 . (8)



and ¢ is a constant between zero and one. If a =1, the method reduces to
DSS; for nonzero values of a, relaxation occurs and the temperature oscilla-
tions inherent in the DSS method are dampened.

B. Regulated Successive Substitution (RSS)

Although significant reductions in coemputatioral Zime and increases in the
radius of convergence may be achieved by the MSS method, each problem must
have the value of a optimized by the user. 1In the RSS method, the value of a
is optimized by the code during execution. The following steps determine the
value of a.

1. The value of a is initialized to one.

2. Then Eq. (8) is solved for Tkn+l (for the first iteration, TLO

contains the
initial starting temperatures at the nodes).

3. Equation (7) 1s solved for T,"'L.

4, A residual error is calculated by

f 1/2
+ ] + (] 2
R PRI ] (9)
and
R™L . [:(T;n+1)2]1/2 . (10)
m
1f
vn+1 > v (11)
or if
MU é RM1, (12)



then a is reduced from the current value by 0.1. The steps are then repeated,
starting with step 2.

Equation (11) checks to see if ithe RSS method is diverging with the current
value of a,. If the equation is true, then the reduction in a will dampen
the oscillation sufficiently to allow the method to converge in most cases.

Equation (12) was added to the test in Eq. (11) because in many problems a
large, but slowly decreasing, oscillation is established and Eq; (11) may be
satisfied, even though the temperatures predicted are still far from the solu-
tion. The test in Eq. (12) typically will allow the RSS method to compute an
a that is close to the optimzl value. After examining many systems, it was
found that values of a below 0.5 did not aid in the speed of convergence, s0 a

i5 constrained to be between 0.3 and one.

C. Newton-Raphson (NR)

In the NR method, the following equation is solved in place of Eq. (6).

J. (T_n) (T n+l

im'" j m Tmn) * 'Fi(Tjn)' (13)

where the Jacobian, Jim' is defined by

A, (7. 2B
Iim(TS") = Aim(TJn) + ———i—:‘: . ‘- aT; (14)
'm m
ang
Fymy™) e Ay @™ 1" - By(myh). (15)

Complete derivations of the Newton-Raphson technique (also known as Newton's
method) may be found in many standard references [5,6]. Among the standard _

convergence techniques, the NR method 1s almest unique in that it has a sound
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theoretical basis and for many problems its convergence is rapid. Although,
the NR method has much to commend it, systems exist for which the unmodified
NR method fails to converge. Conditions for convergence are well known (see
for example [7]), but they rely on the initial estimate to be sufficiently
close to the solution. To determine this initial estimate a priori is usually
difficult and time consuming, if not impossible., In addition, our experience
supports earlier reports [8] of occasional offset when the o. is compared
to analytical solutions.* This problem is unique among the methods we studied,
and the small offset (<0.2% in our work and <5% in Ref. [8]) from the analyti-
cal solutions is related to the nonoscillating behavior of the unmodified NR
algorithm,

Twe common modifications of the NR wmethod address a third problem and try
to reduce the time required to evaluate the Jacobian, Jim' This evaluation
time severely penalizes the NR technique because, even though the NR may take
fewer iterations, the large numbers of computations required per iteration can
cause the overall computation time to be larger than that of its competitors.
The Mcdified Newton-Raphson technique uses the initial values of Jim
throughout the calculation or only updates it every few 1terations. The
quasi-Newton methods avoid the complete evaluation of the Jacobian matrix by
making corrections to the approximate inverse of .Jim from values contained
in the vector function Fi [(4]. Our experience has been that both of the
above-described techniques are of little use in heat transfer problems that
have highly nonlinear boundary conditions or material properties. We found
that algorithms in which the derivatives were not updated regularly diverged

rapidly because the surfaces channe so rapidly in the problems. A second

*Offset 1s defined here as the difference between the temperature an algorithm
converges to and the value predicted by the analytical solution.



reason for not using these approximate Jacobian techniques is that the deriva-
tives in heat transfer applications can often be evaluated directly from known
relations (radiation) or from the siope of a spline of the data (thermal con-
ductivities and specific heats) with accuracy and little computational effort.

D. Accelerated Newton-Raphson (ANR)

To overcome some of the disadvantages associated with the NR method and to
accelerate the convergence, the ANR was developed. This technique is partic-
uiarly useful when strong nonlinearities of known alyebraic form are encoun-
tered 1n either material properties or boundary conditions. A step-size
adjustment that the algorithm uses is continuously modified during execution,

The alteration in step size is realized by systematic adjustments in tne
partial derivatives that are added to A].m in £Eq. (14) to form the Jarobian.
In systems where the nonlinearitv 1s stronger than linear (for example, radia-
tive boundary conditions or heat generation by Arrhenius' law-dependent
chemical reactions), the size of the derivatives is reduced. In systems where
there 1s an inverse temperature dependence (for example, thermal conductivity
of some materials), the derivatives in the Jacobian are increased.

This algorithm may be illustrated in one dimension with the example of
numerically determining a zero for the equation
)" -

f(x) = (x-6 16. (16)

According to the NR method,
X - X - f(x)/f'(x), (17)

where f (x) = df(x)/dx = 4(x-4)3.



With a starting point of x° < 2000, the NR algorithm takes 28 iterations
to reach the root to four significant figures at x = 6. In the ANR method the

power or order of the derivatives is reduced by a factor, B8,
£ (x) = 8(x-4)8, (18)

where 8 > 0.

The reduced derivative is then substituted in Eq. (16) and the NR iteration
procedure repeated. Fer 8 = 0.175 and x° = 2000, only 12 iterations are
required (~-60% reduction in computation time).*

The above example demonstrates many of the essential features of our
experience with this technique in multidimensions. As with the one-dimensional
problem, the derivatives are reducec or increased by a constant factor, 8, for
positive or negative order nonlinearities, respectively. If |8] is too large,**
severe system oscillations will occur; but if a user—optimized 181 is used,
significant (up to 80%) reductions in computation time may be realized. When
the 1terates are close to the solution, ANR and NR do not exhibit significantly
gifferent convergence rctes; but far from the solution, the ANR converges much
more rapidly.

IV. EXAMPLE PROBLEMS
We selected steady-state, one-dimensional problems to best illustrate the
differences between the convergence algorithms and because of the availability

of exact solutions. Both problems involve radiation from a thin slab that is

* Note that the number of iterations taken to converge to the root at x = 6
using the ANR method (8 = 0.175) on this one-dimensional problem is invariant
at 12 iterat ons as the initial guess, xO, is varied over two orders of
magnitude (10 = x0 < 2200).

**Optimal B values are in the range -0.10 < 8 < 0.25 when the order, m, of the
nonlinearity is physically realistic (-2°< m'< 4).
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being heated by a constant voluaetric heat generation rate. In the first
problem, the slab is suspended between two walls held at a constant temperature
(To). The slab is allowed to radiate with a view factor of unity to the
walls (also at TO). heat s lost through conduction out the ends of the
slab and by radiation. The analytical solution to this problem is given by
Ref. [9].

The second problem allows no heat conduction from the edges of the slab,
so all of the heat is removed by radiavion. Increased difficulty in conver-
gence is observed when this problem is compared with the first problem because
the nonlinear transport modes dominate. The steady-state solution in the slab

is easily shown to be

Qs s\ 14
T=|o—*T, . (19)

where & is the thickness of the slab, ¢ is the Stefan-Boltzmann constent, e is
the emissivity of the slab, and T0 is the temperature of the surroundings.

Both slabs were modeled with a single row of finite elements. Details
concerning the values of the physical constants and initial conditions used
may be found in Figs. 1 and 2. We represented the half slabs with both ¢- and
10-element rows. Al! the solution techniques were able to reproduce the
analytical solution at the nodes with less than 1% deviation. The solution
accuracy and convergence behavior were insensitive (o the number of elements,

so the case studies reported here were performed with two elements modeling

the half-width of the slab.
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Note that our criteria for convergence of the solution algorithms were
based on the difference in the temperature field between successive iterations.
The normalized square root of the summation of the temperature differences

n+l vn+1/Rn+1

between iterations squared, § = , was chosen. The solution

was taken to be converged when the inequality
el o1 x 107t (20)

was satisfied. The extrumely small allowable error was for the benefit of
this study only; in meny engineering applications the tolerance could be
several orders of magnitude larger.

A comparisor. of point convergence rates for the solution techniques is
given in Figs. 3 anc 4, where the temperature at the center of the bar is
plotted as a function of the iteration nuiber. The average step size is
plotted as a function of computation time in Figs. 5 and 6. Exact values of
the computation times and numb~r of iterations are listed in Table I[.

V. DISCUSSION

We selected the radiation boundary condition for the example problems not
only because it represents one of the most severe physical nonlinearities, but
also because its convergence properties are representative of many of the non-
linear transport praoblems in our experience,

In these example problems, the methods requiring user intervention, MSS
and ANR, converged in the fewest iterations, with the RSS and NR methods taking
significantly more steps. Observing the number of iterations, hcwever. only
tells part of the story because each iteration in the NR and ANR methods takes
approximately four times the umount of computational time that is required for

a successive substitution step.

12



TABLE 1

COMPARISON OF CONVERGENCE PARAMETERS FOR VARIOUS ALGORITHMS

Numerical Method

Newton Raphson

Acceierated
Newton Raphson

Regul dted Successive
Substitution

Modified Successive
Substitution

Example 1 Example 2
Radiation and Conduction Radiation
Computation Number of Computation ‘Number of

Time () [terations Time (s) [terations
9.53 24 18.27 46
6.00 15 4.34 11
2.72 29 2.22 24
1.61 15 1.00 8

13



The MSS method required only 50 and 33% of the computational effort used
in the RSS method to converge to the analytical solutions in Problems 1 and 2,
respectively. Note that the search for the optimal a requires at least three
trial runs, and that nonoptimal a's in MSS or RSS without feedbick can lead to
wild oscillations or even divergence of the solution.

A comparison of ANR and NR alco shows significant improvements for the
user-optimized method., The method involving user intervention, ANR, converged
in only 60 and 24% of the time required by the NR in Problems 1 and 2, respec-
tively. The selection of the optimal value of 8 = 0.15 was not as sensitive
as the selection of an optimal a. A value of 8 = 0.15 appears to be a reason-
able starting point for problems involving radiation boundary conditions.

The larger amount of heat transferred in Problem 2 by radiation hclps
illustrate that the most interesting contrast between the methods is found
when the heat transfer is dominated by nonlinear transport modes. For problems
with only slightly nonlinear properties or boundary conditions, all of the
algorithms converge satisfactorily. In contrasting Example 1 with Example 2,
we see that the presence of the linear conduction makes convergence easier.

The primary difficulty with the additional nonlinear nature of the equa-
tions in the pure radiatin. example is that the radius of convergence for all
four methods is greatly reduced over that in the combined radiation-conduct ion
example. In each method, the result of a direct successive substitution step
was usec as the initial solution vector. The choice of this particular solu-
tion as an initial vector is rather arbitrary, though it appears to us to be a
logical and generally available solution from which to begin an fiterative
procedure. A second procedure that was used to increase the radius of conver-

gence was to limit the step size (900 K in these examples) at any node. In

14



some of the problems addressed, these limitations might fractionally slow the
convergence rate, but this potential disadvantage is outweighed in our experi-
ence by enhanced stability and increased radius of convergence. In addition,
we have found that the above steps are more convenient to implement and require
less user intervention than more traditional procedures such as an inijtial
solution vector based on physical insight or increasing the number of elements
in the model.

VI. RECOMMENDATIONS

As one might expect, the performance of the various convergence procedures
depends on the problem, and there is no a priori way to predict the optimum
convergence technique. We do not wish to imply that all nonlinearities or
geometries encountered in heat transfer analysis will behave in a manner
analogous to that observec in the exanples given in this paper. For example,
ih certain models with complex geometry and strong nonlinearities (such as
volumetric heat generation or radiation boundary conditions), we have observed
that the methods based on successive substitution have very small radii of
convergence. In these cases, the techniques derived from the Newton-Raphscn
procedure cre nreferred.

Appreciating the iniividual nature of each nonlinear problem encountered
in practice, we have designed our computational scheme to include all four
methods. We suggest that the RSS procedure be employed first., A principal
advantage is that employing the RSS method many times determines the applica-
bility of the successive substitution based methods to the problem without
user intervention. Also, in our experience, if the modified successive sub-
stitution works, it works rapidly, For exanple, 1in Problems 1 and 2, we

observed that even though RSS required 80 to 120% more computation time than
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the optimized MSS, it required no user intervention and it was still much
faster than the NR method. If the 1initial RSS trial 1s successful and one
wishes to examine a number of separate cases with minor property or geometry
changes, then an optimum a for the MSS method is obtained from RSS.

The NR algorithm should be employed if the RSS and MSS methods fail to
converge, [f the absolute value of the order of the ncunlinearity is >2, sig-
nificant savings in computation time may result from the accelerated conver-
gence ~ovided by the ANR method.

VII. CONCLUSIONS

The focal point of this study was the convergence properties of several
solution algorithms for nonlinear finite-element equations wused in heat
transfer., We developed two new modifications of existing methods that speed
the rate of convergence of the Newton-Raphson algorithm and employ feedback to
control a modified method of successive substitution. The modifications re-
quired to implement the new convergence procedures are simple, and the savings
in computational time and uscr interfacing are sianificant,

The problems of a semi-infinite slab with volumetric heating cooled by
radiation plus conduction and radiation alone were presented as test problems
for these clgorithms., We observed that the accelerated Newton-Raphson proce-
dure was capable of converging to the analytical solution in less than one-
quarter of the time nceded by the Newton-Raphson method. The methods based on
successive substitution converged more rapidly than the Newton-Raphson methods
in these example problems, The feedback mechanism in the regulated successive
substitution (RSS) method allowed {t to converge without user intervention by
self-adjustment of the relaxation parameter. The RSS mcthod took lgnger than

modif ied successive substitution, but it was more rapid than either of the

16



Newton-Raphson mei.aods. The need to use any or all of the algorithms in astual

engineering applications is addressed and a procedure for testing new nonlinear

models is outlined.
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The error in the radiation-conduction problem as
defined by the temperature dif£e§75ces between
iterations (v o [F(T N-T N-1)271/2) 45
function of the eldpsid computational time for
various numerical algorithms.
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