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COMPARI SON OF METHODS FOR
FINITE-ELEMENT EQUATIONS

by

G. E. Cort, A. L. Graham,
Los Alamos National

Los Alamos, NM

SOLVING NONLINEAR
IN HEAT TRANS~ER

and N. L. Johnson*
Laboratory
87S45

ABSTRACT

He have derived two nw techniques for solvi,~g the
finite-elemnt heat-transfer equations with h+ghly nonlinear
boundary conditions and matl!rlal properties. When compared
with the nmre ccmmnly employed successive substitution and
Newton-Raphson procedures, the n~ methods speed convergence
rates and simultaneously increase the radius of convergence.
We have observed reductions in co~utation time in excesc of
80% when the new techniques are employed. The first method
accelerates the standard Newton-Raphson approach when the
degree of the nonlinearity is kno~ (for example, radiation
boundary conditions or a prescribed temperature dependence in
the thermal conductivity). The second technique employs
feedback to regulate the solution algorithm during execution.
Comparisons of these techniques are given for stveral practi-
cal exanples.

1. INTRODUCTI ~

We have derived two new algorithms for solving heat-transfer equations

with nonlinear material properties and boundary conditions, The first tech-

nique accelerates the Newton-Raphson algorithm and the second technique e~luys

feedback to regulate the modified method of successive substitution. The

highly nonlinear finite-elemnt equations for a heat-generating solld with

radiation he~t loss at the surface are used to present the two new convergence

algo~’ithms and to canpare them to the rmre ccmnmnly employed Newtoll-Rapllson

~resent address: Department of Chemtcal Engineering, Unlverslty of Wisconsin,
Madison, WI 5;,206.
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technique and modified method of successive substitution. We have observed

significant improvements in total ccmnputing time, ease of use, and radius of

convergence.

This work is

Laboratory to deve

thermal, fluid, and

presented here are

part of a continuing Effort at the Los Alarms National

OJ finite-element modeling capabilities in problems with

structural interactions [1,2,3].* The numerical techniques

being tested and have shown themselves to be useful in

dealing with nonllnearities that result from thermal conauctivities, heat

generation rates, heat-transfer coefficients, and other combinations of varia-

ble dependent material properties and boundary conditions. The problem in-

volving radiation at solid surfaces is, however, one of the more difficult

nonlinear convergence problems encountered in our work, ?nd adequately illus-

trates the relative advantages and disadvantages of the various techniques.

Section 11 presents the firlite-eler’mntformulation, and Sections III and

IV describe the convergence algorithms and the example problems used in this

study. In the final sections, the results of var!~us numrical experiments

are g~ven, and we suggest conditions under which the modified versions appear

to be

11.

superior to our origin?l algorithms.

FINITE-ELEMENT FORMUIJITION FOR A CONDUCTING SOLID

The steady-state energy equation for a nondeformlng solld is

+
aT
— ) ‘Q = O,

i Y ax, (1)

-~~-~a’ckets designate references at end of paper,
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where ~ is the thermal conductivity (( = i with no sunwnation impl ied), Q is
)

the volumtric heat generation, T is the temperature, and xi is the

coordinate variable in the ith direction. The Einstein sumnation convention

is assumed in Eq. (1) and will be used throughout this paper.

The method of weighted residuals with the Galerkin approximation is

applied to Eq. (1) to give

/ Ni
v

& (’ I~H+Quv=o’
j J

(2)

where Nj is the ith elemnt interpolation function. To include the radiation

boundary condition, the Green-Gauss theorem is applied to the first term in

Eq. (2) to give

(3)

where n , is the jth conponent of the unit normal of S. The heat transfer at
J

the surface is described by

A
aT
~nJ”-Y a~ 0C(T4-T04), (4)

where c is the Stefan-Boltzmann constant, c Is the emlssivlty of the surface,

and TA Is the temperature of the surroundings. In this development, we
u

assume that there is no radiation between surfaces

If Eqs. (3) and (4) are substituted !nto Eq.

the~lEq. (2) becomes the finite-element equation

that constitute S.

(2) ar,dwe usc T = ~kTk,



.’

p

aNi aNk
__dV+

‘Y axj ax.
v J

/NiN~UCT3~] ‘~ ‘/ NiQdv+/ ‘UcT~ds- ‘5)
s

This set of equations has the form

A1k(T) Tk = Bi(T)* (6)

Equation (5) was progranmd into a finite-e ienwnt code that uses 8-node

isoparametric elements, Gaussian quadrature, and serendipity shape functions.

Additional details about the finite-element formulation may be found

elsewhere [2,3].

111. NUMERICAL SOLUTION TECHNIQUES

Finding solutions for sets of nonlinear equations is one of the long-

standing and as yet unresolved problems in nume! ical analysis. Regardless of

which convergence algorithm is employed, one encounters practical systems that

require user intervention with physical insigl,t to converge to an answer.

The basic difficulty is illustrated by Eq. (6), a linearized form of the

energy equation. We have to know the values of the coefficient matrix

(Aij(Tk)) and the “known” VCCtOr (Bi(Tk)) ~0 SOIW for Tk. Unfortu-

nately, one must know the answer, ‘k’ ‘0 calculate Aij(Tk) and

B,(Tk).

To circumvent this problem, a number of ~terat!ve techniques have been

developed. We make no attempt to covet- the breadth of this field, but rather

focus on those techniques that offer som special advantage to hea~ t:ansfer

analysis.

Heat-transfer equations and the associat.ecl boundat-y conditions are

continuous and differentiable with respect to the independent variables, In

addition, the derivatives are often easily evaluated from algebralc expressions

so the bulk of the co~uting time is not spent in their evaluation.
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Broyden [4] notes that systems in which the above-mentioned criteria

hold are not recmum?nded as candidates for solution by the various quasi-Newton

techniques. As will be discussed in the following sections, we found that

modified Newton-Raphson concepts and direct successive substitution (the Picard

iteration process) have rather weak convergence characteristics. Consequently,

the paper focuses attenti.)n on the four mthods that we found solve the heat

transfer equations with highly nonlinear boundary conditions, both rapidly and

with a minimum of user intervention,

In this section, wI? present two widely used numrical techfiiques for

solving Eq. (6): the Modified Successive Substitution (MSS) and the Newton-

Raphson (NR). In canparison, we present the two newly developed techniques:

the Regulated Successive Substitution (!US) and the Accelerated Newton-Raphson

(ANR).

A, Modified Successive Substitution (MSS)

Direct successive substitution (DSS) Is perhaps the mst straightforward

of the algorithms and may be written synbo; ically from Eq, (6) as

Aik(Tkn)Tk
n+l

- Bi(Tkn)j (7)

wnt!re Tkn = the estimate of temperature solution at the kth node on the nth

iteratim and Tkn+l ● updated estimate

Solutions obtained with DSS oscillate

of the solution

dround the true

te~erature at node k.

solution and, in many

highly nonlinear problems, they tend to diverge. TO da~en

and extend the rddius of convergence. the MSS mthod is used,

is solved withAik
n+1

and Hi evaluated at Tk , where

the oscillations

In MSS, Eq. (7)

‘in-‘ITJ+“-adTN
5
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and a is a constmt between zero and one. Ifs= 1, the method reduces

DSS; for nonzero values of a, relaxation ~ccurs and the temperature oscil

tions inherent in the DSS method are danpened.

. Regulated Successive Substitution (RSS)B

to

1a-

Althcuigh significant reductions in computational time and increases in t~e

radius of convergence may be achieved by the MSS method, each problem must

have the value of a optimized by the user. In the RSS nwthcrd, the value of a

is optimized by the code during execution. The following steps determine the

value of a.

1. The value of a is initialized to one.

2. Then Eq. (8) is solved for Tk‘+1 (for the first iteration, T~O contains the

initial starting temperatures at the nodes).

3. Equation (7) is solved for T~n+l.

4. A residual err~r is calculated by

r

I 11/2n+l
v 0 ;(T~n+]-T~n)2

and

n+l
R=

If

I(T
In+l 2 1/2
m) .

m

n+~ n,
v >V

or if

n+l 1 Rn+l
v

‘3 ‘

(9)

(lo)

(11)

(12)



then CI is reduced frcm the current value by 0.1. The steps are then repeated,

starting with step 2.

Equation (11) checks to see if the RSS mthod is diverging with the current

value of ai. If the equation is true, then the reduction

the oscillation sufficiently to allow the nethod to converge

Equation (12) was added to the test in Eq. (11) because

in a will dampen

in rmst cases.

in many problems a

large, but slowly decreasing, oscillation is established and Eq. (11) may be

satisfied, even though the temperatures predicted are still far from the solu-

tion. The test in Eq. (12) typically will allow the RSS mthod to ccrnpute an

a that is close to the optimz”l

found that values of a below O.3

is constrained to be between 0.3

c. Newton-Raphson (NR)

In the NR mthod, the follow’

value. After examining many systems, it was

did not aid in the speed of convergence, so a

and one.

ng equation is solved in place of Eq. (6).

Jim(Tjn) (Tmn+l - Tmfl) = -Fi(Tjn) ,

where the JacobIan, Jim, is defined by

()aAik(-ijn) aBi
Jim(Tjn) . Aim(Tjn) +

a~mn
‘k- ~

n?

ana

F,(Tin)- A1k(T/’) Tkn- B,(T).*

(13)

(14)

(15)

Cmplete derlv.atlons of the Newton-Raphson technique (also kno~ as Newton’s

method) may LM found in many standard references [5,6]. Among the standard

convergence techniques, the NR rm?thod Is almost unique in that it has a sound
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theoretical basis and for many problems its convergence is rapid. Although,

the NR nethod has much to ccmum?nd it, systems exist for which the unmodified

NR method fails to converge. Conditions for convergence are well known (see

for example [7]), but they rely on the initial estimate to be sufficiently

close to the solution. To determine this initial estimate a Ptiofi is usually

difficult and tlm consuming, if not impossible. In addition, our experience

supports earlier reports [8] of occasional offset when the G. is compared

to analytical solutions.* This problem is unique amng the methods we studied,

and the small offset (<0.2% in our work and c5% in Ref. [8]) from the analyti-

cal s@lutions is reldted to the nonoscillating behavior of the unmodified NR

algorithm.

Twc comon nmdifications of the NR m?thod address ~ third problem and try

to reduce the time required to evaluate the Jacobian, Jim. This evaluation

time severely penalizes the NR technique because, even though the NR may take

fewer iterations, the large numbers of canputations required per iteration can

cause the overall computation time to be larger than that of its competitors.

The Mcdified Newton-Raphson technique uses the initial values of Jim

throughout the calculation or only ~pdates it every few Iterations. The

quasi-Newton mthods avoid the ccxnplete evaluation of the Jacobian matrix by

making corrections to the approximate inverse of Jim from values contained

In the vector function Fi [4]. Our experience has been that both of the

above-described techniques are of little use in heat transfer problems that

have highly nonlinear boundary conditions or material properties. We found

that algorithms in which the derivatives were not updated regularly diverged

rapidly because the surfaces change so rapidly in the problems. A second

●of .
fset is defined here as the difference between the temperature an algorithm

converges to and the value predicted by the analytical solution.
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reason for not using these approximate Jacobian techniques is that the deriva–

tives in heat transfer applications can often be evaluated directly from known

relations (radiation) or from the slope of a spline of the data (thermal con-

ductivities and specific heats) with accuracy and little computational effort.

D. Accelerated Newton-Raphson (ANR)

acce

u;ar

o overcome son? of the disadvantages associated with the NR method and to

crate the convergence, the ANR was developed. This technique is partic-

y useful when strong nonlinearitles of known algebraic form are encoun-

tered in either material properties or boundary conditions. A step-size

adjtlstmnt that the algorithm uses is continuously nwdified during execution.

The alteration in step size is realized by systematic adjustments in tne

partial derivatives that are added to A1m in Eq. (14) to form the Jacobian.

in systems where the nonlinearit-v is stronger” than linear (for exa,~le, radia-

tive boundary conditions or heat generation by Arrhenius’ law-dependent

chemical reactions), the size of the derivatives is reduced. In systems where

there is an invurse temperature dependence (for example, thermal conductivity

of some materials), the derivatives in the Jacobian are increased.

This algorithm may be illustrated in one diwnsion with the example of

numerically determining a zero for the equation

f(x) = (X-4)4 - 16. (16)

According to the NR method,

n+l n
x =x - f(x)/f’(xj,

where f’(x) = df(x)/dx = 4(x-4)3.

(17)
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Uith a starting point of X“ = 2000, the NR algorithm takes 28 iterations

to reach the root to four significant figures at x = 6. In the ANR method the

power or order of the derivatives is reduced by a factor, 6,

f;(x) = 4(X-4)3-6, (18)

where 8 ~ O.

The reduced derivative is then substituted in Eq. (16) and the NR iteration

procedure repeated. Fcr B = 0.175 and X“ = 2000, only 12 iterations are

req~ired (-60% reduction in computation tinw).*

The above example demonstrates many of the essential features of our

experience with this technique in multidimensions. As with the one-dimnsional

problem, the derivatives are reduced or increased by a constant factor, 6, for

positive or negative order nonlinearities, respectively. If 101 is too large,**

severe system oscillations will occur; but if a user-optimized 161 is used,

significant (up to 80%) reductions in computation time may be realized. When

the Iterates are close to the solution, ANR and NR do not exhibit significantly

aifferent convergence rctes; but far from the solutlon, the ANR converges much

more rapidly.

IV. EXAMPLE PROBLEMS

We selected steady-state, one-dimensional DrObleMS to best illustrate the

differences between the convergence algorithms and because of the availability

of exact solutions. Both problems involve radiation from a thin slab that is

ii Note that the number of iterations taken to converge to the root ~t x = 6
using the ANR method (6 = 0.175) on this one-dimensional problem is invariant
at 12 iterat ons as the initial guess, X“, is varied over two orders of
magnitude (10 ~ X“ < 2200).

●*Optimal B valu;s ar~ in the range -0.10 < B z 0.25 when the order, m, of the
nonlinearity is physically realistic (-2-: m-: 4).

10



being heated by a constant voluiaetric heat

proLlem, the slab is suspended between two wal

(To). The slab is allowed to radiate with

generation rate. Ill the first

1s held at a constant temperature

a view factor of unity to the

walls (also at To). heat +s lost thrwgh conduction out the ends of the

slab and by radiation. The analytical solution to this problem is given by

Ref. [9j.

The second problem allows no heat conduction from the edges or the slab,

so all of the heat is removed by radia”Lion. Increased difficulty in conver-

gence is observed when this problem is compared with the first problem because

the nonlinear transport IIIOdeSdominate. The steady-state solution in the slab

is easily shown to be

()

Qb ~ 1/4
T = z+ ‘o ‘ (19)

where a is the thickness of the slab, tJ is the Stcfan-Boltzmann constclt, c is

the cmissivity of the slab, and To is the temperature of the surroundings.

Both slabs were mdeled with a single row of finite elements. Detai 1s

concerning the values of the physical constants and initial conditions used

may be found in Figs. i iind

10-element rows. All the

analytical solution at the

2. We represented the half slabs with both 2- and

solution techniques were able to reprodllce the

nodes with less than 1,% deviation. The solution

accuracy and convergence behavior were insensitive to the number of elements,

so the case studies reported here were performed with two elements modeling

the half-width of the slab.

11



Note that wr criteria for convergence of the solution algorithms were

based on the difference in the temperature field between successive iterations.

The normalized square root of the sunwnation of the temperature differences

n+l
between iterations squared, C = v ‘+l/Rn+l, was chosen. The solution

was taken to be converged when the inequality

fl+l
E-

-4<1X1O (20)

was satisfied. The ext~l:mely small allowable error was for the benefit of

this study only; in mtny engineering applications the tolerance could be

several orders of magnitude larger.

A canparisor~ of point convergence rates for the solution techniques is

given in Figs. 3 and 4, where the temperature at the center of the bar is

plotted as a function of the iteration nl:illber.The average step size is

plottsd as a function of co~utation time in Figs. 5 and 6. Exact values of

the canputation tires and numb~r nf iterations are listed in Table I.

v. OISCUSSION

We selected the radi~tion boundary condition for the example problems not

only because It represents one of the most severe physical nonlinearities, but

also becaurc its convergence properties are representative of many of the non-

linear transport problems :n our experience.

In these exanple problems, the nthods requ~ring user intervention, MSS

and AM, converged in the fewest iterations, with the RSS and Nilmethods taking

significantly more steps. Observing the number of iterations, hcwevcr. only

tells pa~t of the story because each iteration in the hR and ANR methods takez

approximately four tires the dnmunt of canputatloniil time that is required for

a successive substitution step.

12



TABLE I

COMPARI SON OF CONVERGENCE PARAMETERS FOR VARICnJSALGOR1 THMS

Exanple 1 Example 2
Radiation and Conduction Radiation
Computation Nunber of tomputatlon Nunber ~

Numerical Method Time (s) Iterations Time (s) Iterations

Newton Raphson 9.53 24 18.27 46

Accelerated 6.00 15 4.34 11
Itewton Raphson

Reguldted Successive 2.72 29 2.22 24
Substitution

Mod~fied Succes~ive 1.61 15 1.00 8
Substitution

13



The MS method requirea only 50 and 33% of the computational effort used

in the RSS ~thod to converge to the analytical solutions in problems 1 and 2,

respectively. Note that the search for the optimal a requiresat least three

trial runs, and that nonoptimal a’s in MSS or RSS without feedb~ck can lead to

wild oscillations or even divergence of the solution.

A cunparison of ANR and NR also shows significant improvements for the

user-optimized method. The method involving user intervention, ANR, converged

in only 60 and 24% of the time required by the NR irIProblems 1 and 2, respec-

tively. The selection of the optimal value of 8 = 0.15 was not as sensitive

as the selection of an optimal a. A value of B = 0.15 appears to be a reason-

able starting point for problems Involving radiation boundary conditions.

The larger amount of heat transferred in Problem 2 by radiation helps

illu~trate that the most interesting contrast between the methods is found

when the heat transfer is dominated by nonlinear transport modes. For problems

with only slightly nonlinear properties or boundary conditions, all of the

algorithms converge satisfactorily. In contrasting Example 1 with Example 2,

we see that the presence of the linear cond~’ctionmakes convergence easier.

The primary difficulty with the additional nonlinear nature of the ~qua-

tions in the pure radiat in”,example is that the radius of convergence for all

four mthods is greatly reduced over that in the ccxnbined radiation-conduction

ex~le. In each method, the result of a direct successive substitution step

was used as the initial solution vector. The choice of this particular solu-

tion as an initial vector is rather arbitrary, though it appears to us to be a

logical and generally available solution from which to begin an iterative

procedure. A second procedure that WJS used to increase the radius of conver-

gence Mas to limit the step size (900 K in these examples) at any node. In

14



sane of the problems addressed, these limitations might fractionally SIN the

convergence rate, but this potential disadvantage is outweighed in our experi-

ence by enhanced stability and increased radius of convergence. In addition,

we have found that the above steps are more convenient to implemnt and require

less user intervention than more traditional procedures such as an initial

solution vector based on physical insight or increasing the number of elements

in the model.

VI, RECOPUIENDATIONS

As one might expect, the performance of the various convergence procedures

depends on the problem, and there is no a priori way

convergence technique. We do not wish to imply that

geometries encountered in heat tran~fer analysis wi

to predict the optimum

all nonlinearities or

1 behave in a manner

malogous to that observed in the exmples given in this paper. For examp’

ill certain models with complex geometry and strong n6nlinearities (such

volurwtric heat generation or radiation boundary conditions), we have obser’

that the methods based on successive substitution have very small radii

e,

as

ed

of

convergence. In these cases, the techniques derived from the Newton-Raphscn

procedure ~re preferred.

Appreciating the individual nature of each nonlinear problem encountered

in practice, we have designed our computational scheme to include all four

methods. We suggest that the RSS procedure be employed first, A principal

advantage is that employing the RSS method many times determines the applica-

bility of the successive substitution based mthods to the prcblem without

user intervention. Also, in wr experience, if tkc modified successive sub-

stitution works, It works rapidly, For exmple, in Problems 1 and 2, we

observed that even though RSS required 80 to 120% more co~utation time than

15
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the optimized MSS, it required no user intervention and it was stil”l much

faster than the NR mthod. If the initial RSS trial is successful and one

wishes to examine a nunber of separate cases with minor property or geometry

changes, then an optflmuma for the MSS mthod is obtained from RSS.

The NR algorithm should be employed if the RSS and MSS methods fail to

converge. If the absolute value of the order of the nonlinearity is>2, sig-.

nificant savings in computation time may result from the accelerated conver-

gence “’.ovided by the ANR method.

VII. CONCLUSIONS

The focal point of this study was the convergence properties of several

solution algorithms for nonlinear finite-element equations used in heat

transfer. We developed two new modifications of existing methods that speed

the rate of convergence of the Newton-Raphson algorithm and employ feedback to

control a modified mthod of successive substitution. The nudifications re-

quired to Implement the new convergence procedures are simple, and thu savings

in canpllta!lonal tim and USLC interfacing are sianlficimt.

The problems of a semi-infinite slab with volumetric heating cooled by

radiation p’Ius conduction and radiation alone were presented as test problems

for these ~lgorithms, We observed that the accelerated Newton-Raphson P!OCC..

dure was capable of converging to the analytical solution in less than one-

quarter of the t

successive subst

in these exa~le

me needed by the Newton-Rdphsot~ methud. The mtithods based on

tution converged more rapidly than the Newton-Raphson mthods

problems, The feedback mechanism in the regulated successive

sub~titution (RSS) mthod allowed it’to converge without ,Jscr intervention by

self-adjustment of the relaxation parameter, The RSS method took lGnger thdn

modified successive substitution, but it was nure rapid than either of the

16
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Newton-R aphson me’L.lods. The need to use any or all of the algorithms in actual

engineering applications is addressed and a procedure for testing new nonllnear

models is outlined.
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2ocm ●

VOLUMETRIC HEAT GENERATION ● 251 ‘~~

INITIAL TEMPERATuRE ● 8000K

Fig, 1. Problem definition for a semi-infinite slab with internal
heat generation. Heat transfers from the slab by conduc-
tion to the wall and cadiation. Note that Ax = 0.275 calls K
and Ay w Lz . 30 cal/s-un K,

\

i
* 20cm *

vOLUMETRIC HEATOENERATION •+~

INITIAL TEMPERATURE _ oioK

NO HEAT
FLUX AT
SIDES

Fig. 2, I“he gnrm?try, boundary condlt~ons, ard initial tempera-
ture conditions for a semi-infin!te slab with internal heat
generhtlon, Radiation Is the only thermal transport rode.
In thfs problem, Ax ● ~y= AZ = 30 cal/S-un K.
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Fig. 3. The temperature (Tx.o) at the center cf the bar computed by
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radiation–conduction problem
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Fig. 4. The temperature (Tx.o) at the center of the bar comnuted
by various ~thods as a function of the nunber of iterations
In the radiation problem.
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Fig. 5. The error in the radiation-conduction problem as
defined by the temperature d’f e
itera~,~l)~ (Vn - [ (~ n-T n-!~!ll!~!~e~~~tween

tfunction of the e“l s?d ccnnputatlonal tim for
va~lous numerical algorithms.
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Fig. 6. The error in the radi ation problem as defined
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