Presentation to the AMORS IX

Planning and Response Resources for Infectious Disease

Dr. Norman L. Johnson Chief Scientist Referentia Systems Inc.

(on leave from Los Alamos National Laboratory)

njohnson@referentia.com

Sydney, Australia 8-10 Sept 2008

Infectious Disease Worldwide

- Infectious disease/outbreaks are common and deadly, because of:
 - Increased worldwide population density, travel and transfer of goods.
- Infectious disease/outbreaks are a source of major instability in developing and undeveloped countries, because:
 - Relative decline in healthcare in many countries.
- Developed countries are at great risk from new bio-threats, natural or engineered, because:
 - Developed countries operate more optimally and are therefore less robust.
 - Responses to new biothreats, unlike nuclear threats, are complicated by background of common threats and by advances in *dual-use* medical research.

Leading Infectious Causes of Death Worldwide

Cause	Rank		~Number of Deaths
Respiratory infections	1	1	3,871,000
HIV/AIDS	2	7	2,866,000
Diarrheal diseases	3	2	2,001,000
Tuberculosis	4	З	1,644,000
Malaria	5	4	1,124,000
Measles	6	5	745,000
Pertussis	7	7	285,000
Tetanus	8	12	282,000
Meningitis	9	8	173,000
Syphilis	10	11	167,000
		1993	3
		rank	Source: WHO, 2002

Infrastructure Impact and Dependency

Sector]	Energy	y & Ut	tilities	S	Se	ervice	es	
Dependency m Critical Infrastru Protection Task F Canada	eatrix - ucture Force of Element		Electrical Povertest Impact	Water Purification	Sewage Treatment	Natural Gas	Oil Industry	Customs and Immigration	Hospital & Health Care Services	Food Industry	
Energy & Utilities	Electrical Power			L			М				
	Water Purification		Н				Μ				
	Sewage Treatment		М	Н			H				
	Natural Gas		L				L				
	Oil Industry		H	L							
Services	Customs & Immigration		H	L	L	L	L	_	L		• · · • • •
	Hospital & Health Care Services		H	H	L	H	H	Μ		H	Greatest Dependency
	Food Industry		Н	H	Н	L	Μ	Μ	L		
	к	EY	Н	High	Μ	Med	lium	L	Low		

Because workers are required to support all systems, high dependency of health care is a problem.
Not evaluated is workforce impact - as might be drastically reduced by a failure of the health care system.

See Grenier, Jacques. "The Challenge of CIP Interdependencies". Conference on the Future of European Crisis Management (Uppsala, 19–21 March 2001). http://www.ntia.doc.gov/osmhome/cip/workshop/ciptf_files/frame.htm.

Operational Response to Infectious Disease

Approach:

- Capture primary impact disease progression
- Capture secondary/tertiary effects e.g, mission readiness

Goal:

- Avoid breakpoints significant system transitions from relatively small changes - particularly, in the health system
- Breakpoints in one system can cause breakpoints in other systems.

Game Changer: Mitigations (preventative measures) can prevent breakpoints.

What resources are available?

Breakpoints in the public health systems (from AUS MoH)

Disease Progression in a diverse population

Death occurs 8 days after appearance of severe symptoms

Mitigative Efficacy at Different Times in Disease Progression

	Prophylatic	At Appearance of Non- Specific Symptoms	At Appearance of Severe Symptoms	Never
Non-Specific Symptom Rate	.2	1.0	1.0	1.0
Duration of Severe Symptoms in Survivor Days	1	3	3	3
Severe Symptom Rate Fatality Rate	0.05 0.02	0.98 0.33	1.0 0.33	1.0 0.33

Required for viruses, bacteria, toxins, etc.

And the different types or strains of each.

Example: Biological Agent Reference Tool (BART): a Web-based response information tool

Epidemiological Resources Needed

Spatial Scale

Resource needs: prediction of disease progression in heterogeneous populations, across large scales, resolved at individual and local level

A Landscape of Epidemiological Options

EpiCast (Epidemiological Forecasting)

- A stochastic agent-based simulation model to predict the global/national/regional spread of infectious diseases and to assess mitigation strategies
 - Capable of simulating billions of agents on supercomputers and millions on laptops

Four components:

- 1. An Individual disease progression model varies by type of person: age, occupation, health status, but not location.
- 2. Demographics (where people live) and workerflow data (where they work) at "community" resolution.
- **3.** Community network: Contacts between people based on contact groups (family, work group, school, community...).
- 4. Irregular travel travel between Community networks, usually long range.

Disease model is general. The rest are determined by data from area of operations

T. C. Germann, K. Kadau, I. M. Longini, and C. A. Macken, "Mitigation Strategies for Pandemic Influenza in the United States," *Proceedings of the National Academy of Sciences* **103**, 5935-40 (2006).

Influenza in the US: Planning for the next pandemic

Baseline - Moderate Severity

Each Census tract is represented by a dot colored according to its prevalence (number of symptomatic cases at any point in time) on a logarithmic color scale, from 0.3-30 cases per 1,000 residents.

Baseline simulated pandemics

Table 4. Characteristics of nationwide outbreaks of pandemic influenza, as given by baseline simulations without any interventions.

0.12	0.15	0.17	0.20
1.6	1.9	2.1	2.4
14	13	12	11
29	24	22	19
48	37	34	29
70	52	46	39
117	85	75	64
2.3 M	4.5 M	6.0 M	7.9 M
86	68	60	52
92 M	122 M	136 M	151 M
	0.12 1.6 14 29 48 70 117 2.3 M 86 92 M	0.12 0.15 1.6 1.9 14 13 29 24 48 37 70 52 117 85 2.3 M 4.5 M 86 68 92 M 122 M	0.12 0.15 0.17 1.6 1.9 2.1 14 13 12 29 24 22 48 37 34 70 52 46 117 85 75 2.3 M 4.5 M 6.0 M 86 68 60 92 M 122 M 136 M

Most of the epidemic activity is in a 2-3 month period, starting 1-2 months after introduction

Breakpoint ($R_0 \sim 1$) Behavior

 $R_0 \sim 0.9$

Introduction of 40 infecteds on day 0, either in NY or LA, with and without nationwide travel restrictions

All 14 airports

60

Days Since First Introduction

LA, 1% travel

only after alert (day 38) NY LA

Current Incidence Rate (New III per 100)

1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0

0

20

40

Strategies for Pandemic Influenza Mitigation for $R_0 = 1.8$ (Simulations of 280 mill people in USA for "moderate" pandemic)

Successful Mitigations

- □ 60% TAP (182 M)
- Vaccination child-first
- Vaccination (random) + school closure + social distancing + travel restrictions
- Vaccination (child-first) + school closure + social distancing + travel restrictions
- 80% TAP (0.7 M) + vaccination (random) + school closure + social distancing + travel restrictions

Number ill per 1000

Failed Mitigations - Full Pandemic (>10%)

- Social distancing alone
- Travel restrictions alone
- Social distancing + travel restrictions

Uncertain Mitigations

- Vaccination random
- School closure alone

Modeling Military Force Structure & Interactions

How "community network" (#2) is determined:

Squad)

Squad

Company

Battalion

Division

Brigade

Squad)

Platoon

- Each individual solider belongs to a specific squad, platoon, ..., army
- The squad ... division levels comprise a hierarchy of "community networks: an individual's likelihood of becoming infected from these interactions is: p_{sqd}•n_{sqd} + p_{plt}•n_{plt} + ... + p_{div}•n_{div}

• where the p_X are contact rates from the unit interaction survey, and n_X are the number of infectious soldiers in that unit.

 A survey was done to determine p_x.

Modeling military force structure & interactions

How "irregular travel", typically long-range travel, is modeled:

• Interactions with other divisions are captured in a manner analogous to the long-range travel in the civilian sector:

- With a specified frequency, soldiers are randomly selected and sent for a period of 1-14 days to a unit outside their own division
- The outside unit is randomly selected, but biased towards those in the same corps to approximate "upward" interaction rates

Demographics and Workflow (#2) and Irregular travel (#4) for Public-military Model for South Korea

Public (#2 and #4):

- Census for 2000 for the 9 provinces and 6 special cities, ranging from 0.5 to 10 million people each (46 million total) - used in "public" community network.
- Worker-flow data estimated by geographic proximity (no USA census-like data available).
- Random long-range travel by public

Military demographics (#2):

- Republic of Korea forces down to battalion level
- U.S. forces in South Korea

Military-Civilian interaction (#4):

 Based upon the geographic position of each military unit; soldiers occasionally (very rarely) interact with a random community in the local province/special city.

Effect of US vaccination policy on public (smallpox)

Final attack rates (averaged over 10 realizations):

US military vaccination level	civilians	ROK forces	US forces			
0%	52.7%	51.3%	53.4%			
90%	52.7%	51.4%	0.6%			

- No protection of public is observed for different rates of vaccination of US forces (as expected - military are not "spreaders").
- US forces remain at risk due to the widespread epidemic among the surrounding (unvaccinated) population.

Mitigation: Post-detection intervention of quarantine

- Assume 50% leakage from civilian quarantine, but perfect squad-level quarantine of military personnel
- Quarantine benefits non-quarantined civilians

Conclusions: no surprises because of the long time of disease progression of small pox. The same conclusions are NOT true for pandemic influenza!

System-of-System Resources

Critical Infrastructure Protection (CIP) resources

Critical Infrastructure Interdependency Modeling: A Survey of U.S. and International Research (Aug 2006)

30 infrastructure simulations tools reviewed, based on infrastructure included, approach, coupling type, platform, software requirements, user skill, maturity. •Tools: AIMS, Athena, CARVER+, CIMS, CIP-DSS, CIPMA, COMM-ASPEN, DEW, EMCAS, FAIT, FINSIM, IIM, MIN, NEMO, Net-Centric GIS, NISAC, NGTools,...

					Area Model by Infrastructure Sector						Area Model by Infrastructure Sector Simulation System							stem odel	Hardy Platf Require	ware form ements	Software Requirements			Use Maturit	r and y Levels				
		Simulation Name	Developer	Electric Power	Natural Gas	Drinking Water	Sewage Water	Storm Water	Human Activity	Financial Networks	SCADA	Telecom	Computer Networks	Oil Pipeline	Rail System	Highway System	Waterway System	Police/ Regulatory Constraints	Continuous	Discrete	Integrated	Coupled	PC	HPC	Windows	Linux	Solaris	Users	Maturity Level
	1	AIMS	UNB														Х		х		х		1					IA	RS
	2	Athena	On Target Technologies, Inc.	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	A	х	A	х		х			EA	м
	3	CARVER ²	National Infrastructure Institute																				х		х			в	MC
	4	Ch	ANL	X	X						х	Х							X		х							В	MI
	5	CIMS	INL	X				1	х		х									A	х		х	X	х	X	X	в	DV
	6	CIP/DSS	LANL, SNL, ANL	X	Х	Х	X	х	х	Х	х	Х	х	х	X	х	х	Х	X		х		х		х				MI
	7	CIPMA	Australia	+ x	X					X		X		X					X							 	\vdash	В	MI
	8	CISIA	University Roma Tre	X							х																		
	9	COMM-ASPEN	SNL							Х		Х									х		х					IA	DV
	10	DEW	EDD	Х							х																	В	MC
Į	11	EMCAS	ANL	Х						Х							Х			А	х		х			1.1.1		IA	MI
	12	FAIT	SNL	X	Х												х		L	ļ	х				х	X		IA	DV
	13	FINSIM	LANL							Х		Х							х			A	1		х			IA	DV
	14	Fort Future	USACE	Х	Х	Х	X	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х										В	MC
	15	IEISS	LANL	X	Х														х			A	х		х	X		IA	MI
	16	IIM	UV	X						Х		X							1		Х					1		IA	RS
	17	Knowledge Management and Visualization	CMU	х											x	х	х											IA	RS
	18	MIN	Purdue						х							х							1						
	19	MUNICIPAL	RPI	x								х			x														
i	20	N-ABLE	SNL	X						х					x					А	х		1000			1		IA	MI
i	21	NEMO	SPARTA	X	х	х									x			x	х		х		х			1			DV
ĺ	22	Net-Centric GIS	York University	[]	j			i			·				x	х	х		·	i		i]	·	i		IA	RS
	23	NEXUS Fusion Framework	IntePoint, LLC.	X					X			х			x	х												в	MC
	24	NGtools	ANL	X	х																							В	MI
	25	NSRAM	JMU	X								Х								Х									RS
	26	PFNAM	ANL		X									Х															
	27	TRAGIS	ORNL												X	х	х	Х											MI
	28	TRANSIMS	LANL						Х											A		A		X		X		В	MC
	29	UIS	LANL			Х	X	Х	Х			Х				х	х		х	А		A		X		X		IA	MI
	30	WISE	LANL			Х	Х	Х											х			A			Х			IA	DV
	Simulat I A	ion Type: Input-Output Model Agent-based	Users: IA Internal Anal EA External Ana B Both	yst Ilyst	Ma RS DV MI MC	iturity: F D N C N	Research Developmer Mature Inter Mature Com	nt mal ımercial																					

CIP/DSS Resource: Coupled Infrastructures

Critical Infrastructure Protection / Decision Support System (CIP/DSS) Toolset:

- Includes 14-17 infrastructures
- Calibrated to detailed National Infrastructure Simulation and Analysis Center (NISAC) resources
- Open-source approach Implemented in a system simulation resource: VENSIM

Public Health component combines:

- A multi-binned SIRx infectious spread model (modifiable) capable of treating regional, public/military, age populations
- Includes hospitals, staff, beds, etc.
- Includes many medical mitigation options including use of therapeutic stockpiles and time required to distribute these

CIP-DSS Combined Epi and Public Health

Summary of Disease Progression Resources and Their Uses

Resource	Method	Scope	Resolution	Typical Uses
BART Sponsor: DHS/S&T	Novel: distributions and disease stages	Diverse populations but well mixed	Spatial: none; Individuals: distributions; Time: minutes	 Population impact Tool: How quickly do I have to act? What is the basic knowledge I need to address the threat?
CIP-DSS Source: DHS/NISAC	Couple differential equations (SIRx type)	Regional- Multisector	Spatial: regional; Individual: none; Time: minues	Multisector Consequence Analysis: • Sector impact? • Multiple breakpoints?
EpiCast Sponsor: DHS/S&T	Community based agent model, census data driven	World, nation, regional and local	Spatial: 2000 people tracks; Individual: yes; Time: 1/2 day	Epidemic Forecasting Tool:National impact?Individual-national options
EpiSimS Source: DHS/NISAC	Individual activity based agent model	Regional and local (to building and car level)	Spatial: buildings; Individual: detailed activity; Time: minutes	 High-fidelity geospatial epidemic progression: Validation of coarse models Individual mitigation options
TOMM Sponsor: DoD/ONR	Use any epidemiolog- ical model, adds readiness evaluation	Theater of operations; public optional	Depends on epi model uses.	Operational readiness: • Personnel? • Mission/equipment? • Best coarse-of-action

Selection of Resource by Application

Application	BART	CIP-DSS	EpiCast	EpiSimS						
Approach used	Distribution functions	Differential SIRx models	Stochastic agent-based	Deterministic agent-based						
Predict disease progression in diverse populations for planning	Data driven for populations	Requires aggregate disease progression parameters	State of the art for national- regional epidemics	State of the art for regional epidemics						
Utility of different medical mitigation options at local level	Single mitigation for each biothreat	Limited local and individual mitigations	Full spectrum, realistically implemented	Full spectrum, realistically implemented						
Impact on civilian workforce	Inferred only	Explicitly captured in model	Limited workforce impact	Predictive workforce impact						
Use in Operations Response	Coarse response resource only	Ideal option for CIP impact - but limited epi	Good for regional impact and detailed mitigations	Computer intensive, limited adaptability						
green: go, yellow: caution - limited utility, red: not feasible										

References

- **BART**: Ben McMahon <mcmahon@lanl.gov> (also Norman Johnson <norman@SantaFe.edu>)
- EpiCast (National and regional): Tim Germann tcg@lanl.gov (also <norman@SantaFe.edu>). See T. C. Germann, K. Kadau, I. M. Longini, and C. A. Macken, "Mitigation Strategies for Pandemic Influenza in the United States," *Proceedings of the National Academy of Sciences* 103, 5935-40 (2006).
- EpiSims: <u>http://ndssl.vbi.vt.edu/episims.php</u>
- CIP-DSS: <u>http://www.sandia.gov/mission/homeland/programs/critical/nisac.html</u>
- **TOMM**: Darren Kwock <dkwock@alionscience.com> (also njohnson@referentia.com)
- M. Dunn, and I.Wigert 2004. International CIIP Handbook 2004: An Inventory and Analysis of Protection Policies in Fourteen Countries. Zurich: Swiss Federal Institute of Technology
- D. Dudenhoeffer, S. Hartley, M. Permann (Idaho National Laboratory) 2006. *Critical Infrastructure Interdependency Modeling: A Survey of U.S. and International Research,* for P. Pederson, Technical Support Working Group, Washington, DC, USA
- United States Joint Forces Command, The Joint Warfighting Center, Joint Doctrine Series Pamphlet 4, Doctrinal Implications of Operational Net Assessment (ONA), 2004.
- T. D. Crowley, T. D. Corrie, D. B. Diamon*d*, S. D. Funk, W. A. Hansen, A. D. Stenhoff, D. C. Swift *2007. "Transforming the Way DOD Looks at Energy: An approach to establishing an energy strategy,"* Report FT602T1, LMI, commissioned by Pentagon's Office of Force Transformation and Resources
- Capt Bob Magee OUSD (IP) June 17, 2003. Slides from Infrastructure "Security Challenges for the Defense Industrial Base" by NDIA Homeland Security Symposium.
- R.J. Glass, L.M. Glass, W.E. Beyeler, H.J. Min. "Targeted social distancing design for pandemic influenza".
 Emerging Infectious Disease. 2006 Nov. Available from http://www.cdc.gov/ncidod/EID/vol12no11/06-0255.htm
- L. Sattenspiel, A. Lloyd. "Modeling the Geographic Spread of Infectious Diseases: Report on the Critical Review of Geographic Epidemiology Modeling Study." Prepared for the Defense Threat Reduction Agency, DTRA01-02-C-0035. April 2003. http://www.dtra.mil/asco/ascoweb/CompletedStudies.htm (strongly recommended as an introduction)