
1

Dr. Norman L. Johnson

Chief Scientist

 Referentia Systems Inc.
(on leave from Los Alamos National Laboratory)

njohnson@referentia.com

Sydney, Australia

8-10 Sept 2008

Presentation to the AMORS IX

Planning and Response Resources

for Infectious Disease

Good morning/afternoon, ladies and gentlemen. I am Norm

Johnson from Referentia Systems. I want to share with you today

my experience over the last 10 years in developing planning and

response resources for addressing infectious diseases - mostly for

the U.S. Government and public. While I was at Los Alamos

National Laboratory I worked on the problem all the way from

the pathogen (the bug that kills you) to developing the advanced

epidemiological simulation resources to conducting

comprehensive risk assessments to biological threats.  At the end

of this talk I include a list of references and contact information

to help you learn more.
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! Infectious disease/outbreaks are common and deadly,

because of:
– Increased worldwide population density, travel and transfer of

goods.

! Infectious disease/outbreaks are a source of major

instability in developing and undeveloped countries,

because:
– Relative decline in healthcare in many countries.

! Developed countries are at great risk from new bio-

threats, natural or engineered,because:
– Developed countries operate more optimally and are therefore

less robust.

– Responses to new biothreats, unlike nuclear threats, are

complicated by background of common threats and by advances

in dual-use medical research.

Infectious Disease Worldwide

Because we live in a world of infectious disease in personal, public and

military systems, there are many ways to begin.  I will start by

summarizing how the health community views infectious threats.

Infectious threats, unlike nuclear threats, are common and daily cause

many deaths, and are becoming more so as our populations become

denser and we travel and transfer goods worldwide.  The potential for an

outbreak to start is proportional to the number of people and the speed of

spread is proportional to our travel.

Infectious disease is also a major source of instability in developing and

underdeveloped countries, as we have seen after regional wars and

disasters, largely due to the relative decline of healthcare in these

countries.

Finally, developed countries are at great risk to new biothreats, just as we

are to terrorism in general.  Because our economies are sensitive to

elective consumerism and because we operate our countries more

optimally, we are more sensitive to disruption. We also are becoming

more at risk because medical advances have “dual ``uses”: biotechnology

can be used for aiding public health, as well as developing, even

unintentionally, the next biothreat.
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Leading Infectious Causes of Death WorldwideLeading Infectious Causes of Death Worldwide

Respiratory infections 1 3,871,000

HIV/AIDS 2 2,866,000

Diarrheal diseases 3 2,001,000

Tuberculosis 4 1,644,000

Malaria 5 1,124,000

Measles 6    745,000

Pertussis 7    285,000

Tetanus 8    282,000

Meningitis 9    173,000

Syphilis            10    167,000

Cause        Rank          ~Number of Deaths

Source: WHO, 2002
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This slide illustrates many of these points.  As you see in the

table above of the yearly deaths from infectious disease in year

2002, many parts of the world are still very much fighting a

battle of life and death - most of these deaths occur in developing

countries. Three observations:  First, the diseases in yellow are

preventable - about 30% of the total deaths - illustrating that we

are not addressing even curable problems due to poor public

health resources. Secondly, the third killer, HIV/AIDS, wasn’t

even known 20 years ago and has grown by a factor of 10 in 7

years. Many of the biothreats that concern health officials in

developed countries are new ones (such as Ebola) or old ones

that have developed resistance to our treatments - a common

approach to biological warfare - as in the case of tuberculosis.

Finally, an influenza pandemic will happen and could increase

the first number by 10 to 100 times.

Norman Johnson
Norman Johnson - Sep 8, 2008 6:13 AM
skip
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Infrastructure Impact and Dependency

Greatest Dependency

KEY

Dependency matrix -

Critical Infrastructure

Protection Task Force of

Canada
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• Because workers are required to support all systems, high dependency of health care is a problem.
• Not evaluated is workforce impact - as might be drastically reduced by a failure of the health care system.

The greatest concern of a potential outbreak is the possibly of a failure of

civilization.   One could cite as proof the economic impact of the Severe Acute

Respiratory Syndrome, or SARS, outbreak in Asia, which was devastating to

some regions, particularly considering that the number of SARS deaths was

well below those of a normal influenza season - this illustrates how we have

become more vulnerable because consumer behavior dominates the economy in

developed countries.

Another perspective is the growing dependencies of our infrastructures and is

relevant to the rest of this talk.  An important study was released in 2001 by

Canada based on the input of about 60 experts - evaluating the dependency of

one infrastructure on another. The above chart summarizes the results.  You can

read dependency by rows: the Food Industry has a low dependency on Health

care, but health care has a high dependency on the food industry.

Not surprisingly, electrical power had the biggest impact on other

infrastructures (reading down the chart).  Maybe more surprising was that the

public health services have the highest dependencies of all infrastructures. But

because all infrastructures depend on a workforce, one can propose a rapid

failure of many infrastructures if the public health system collapses. A study of

the impact on the workforce by sector due to pandemic influenza strongly

reinforced this conclusion.
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Approach:
– Capture primary impact - disease progression

– Capture secondary/tertiary effects - e.g, mission readiness

Goal:
– Avoid breakpoints - significant system transitions from relatively

small changes - particularly, in the health system

– Breakpoints in one system can cause breakpoints in other

systems.

Game Changer: Mitigations (preventative measures) can

prevent breakpoints.

What resources are available?

Operational Response to Infectious Disease

How is the previous discussion applied to determining
operational readiness to infectious diseases?  We conclude that
we must first capture the primary impact of an infectious disease
on the population or subpopulation of interest.  And then we
need to evaluate how the change in the workforce impacts the
mission readiness, both for the public, which may choose not to
work if they are threatened, and for the military, which may have
to supplement the public workforce, while at the same time also
being impacted by illness.

A major lesson learned in risk assessment is that the first
analysis is to determine if a small change results in a significant
system transition - a tipping point or breakpoint.  And as
reflected in the prior dependency matrix, breakpoints in one
system can cause breakpoints in other systems if there is a high
dependency. Our goal then is to avoid breakpoints by applying
preventative measures or mitigations where necessary.

The rest of this talk discusses the resources available to help us
in these goals.
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Expanded services avoided

Breakpoints in the public health systems (from AUS MoH)

Seasonal flu capacity

Health system surge capacity

Unmitigated

Disease

strength or

severity

Mitigated with

Public Health

measures

Time

Let’s first address what a breakpoint looks like in the public health

system. The following sets of slides are from the Australian Ministry of

Health and describe very well the different breakpoints in the health

system and how mitigations can potentially avoid them.  Take the

response to pandemic flu.  At a first level of response, if a pandemic is

more severe than a normal flu season, then it may cause the health

system to provide a surge capacity to address the extra cases.  At this

level of disease severity the system may not experience a breakpoint, but

a normal expansion of services. Mitigation actions can keep an outbreak

within the normal fluctuation of cases and the need to utilize the surge

capacity is avoided.
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Seasonal flu capacity

Health system surge capacity

Health system shift capacity

Unmitigated

Mitigated with

Public Health

measures One system transition occurs, but

a breakpoint is avoided

Disease

severity

Time

If the disease severity is greater, then the health system will have to

respond with extreme shifts in resources, such as triage of patients,

establishment of temporary treatment centers or large scale quarantine.

Mitigation measures can avoid the this breakpoint.
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Two breakpoints past, 

      third manageable

Seasonal flu capacity

Health system surge capacity

Health system shift capacity

Health system capacity overwhelmed

Unmitigated

Mitigated with

Public Health

measures

Disease

severity

Time

If the disease severity is even greater, then mitigations can mean the

difference between the health system in a extreme operational response

or being overwhelmed and possibly failing - with the potential of

extreme public reactions and societal impact. Again mitigations can

avoid this breakpoint.
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Three breakpoints, outcome uncertain

Seasonal flu capacity

Health system surge capacity

Health system shift capacity

Health system capacity overwhelmed

Unmitigated

Mitigated with

Public Health

measures

Disease

severity

Time

Finally in extreme disease severity, there may be no mitigation options

that avoid breakpoints, as indicated in the figure.

How are these transitions determined and what do they depend upon?

Not surprisingly, each infectious disease has different resource

requirements, breakpoints and mitigations. For example, because of the

limited supply of ventilators (medical devices for assisting breathing),

diseases that require ventilators, such as a botulism toxin exposure or

pandemic influenza, quickly overwhelm the health system, whereas

other threats would not.  Furthermore, different strains of an infectious

disease may behave very differently.  For example, pandemic influenza

in the first years tends to attack healthy adults, but in later years attacks

children and the elderly. Hence the early phase of a pandemic can have a

significant impact on the workforce, including health care workers.

So what resources are available for the quick determination of

breakpoints, which depend on response times and resources available

and mitigation options?
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Disease Progression in a diverse population

Required

for viruses,
bacteria,

toxins, etc.

And the

different
types or

strains of
each.

Before considering the first type of resource required, one point must be stressed: The greatest

challenge to an operational response is planning and responding to an unknown threat.  The

faster the threat agent can be identified, the faster existing knowledge can be applied, such as

how to avoid spreading the disease.  Severe Acute Respiratory Syndrome (SARS) was an

excellent example - until it was identified, there was great uncertainty how to limit its spread and

how to develop a treatment. But once identified, response strategies were quickly implemented

and public fears lessened. The health community is severely challenged at present to identify

unknown threats, particularly engineered threats. Addressing this issue is beyond the scope of

this talk, although I would be happy to talk with you about it.  In the remainder of this talk, we

assume the threat can be identified.

After determining the biothreat, a major consideration is the distribution of responses by the

population exposed.  Some individuals may never get sick, even though they are exposed. And

some individuals may be the first to be sick, particularly immune-compromised individuals (such

as children, elderly, or HIV patients). We need to understand the sensitivities and disease

progression in a diverse population. This is particularly true if there is a widespread low-level

dispersion of a threat, such as the anthrax mail attack in the United States, where many people

are exposed and the extremes of the sensitivity of the population becomes important.

What we find is that analysis resources that can handle diverse responses (like agent-based

models) are often computationally intensive and are not useful for quick analysis.

A unique approach to this problem is captured in the Bio-Agent Reference Tool (BART)

resource.  The inputs to BART are shown on this slide, and they begin with distributions of

progression to different stages of a disease. For example, the curve for smallpox at the left

represents the likelihood at different times that an individual will progress after being exposed to

showing nonspecific symptoms (meaning they are difficult to diagnose). These distributions are

based on progressions of known diseases in a general population, but exhibit a general shape as

shown. They capture the sensitive individuals at the left edge of the distribution and the strong

individuals at the right. And if the area under the distribution is less than one, some individuals

will never become ill.  The curve on the right shows the progression to the next stage of illness,

severe symptoms, again reflecting the same general shape. These distributions when combined

with fatality information capture the main disease stages recognized by health officials,

providing the numbers of individuals in each stage of disease progression (incubating, non-

specific, severe, dead, or recovered) over time, but unlike the SIRx models, it accurately captures

the extremes of the response.

For mitigation options, the BART resource requires others parameters that are familiar to

medical experts, such as effectiveness of medical actions (prophylactics) at different stages of the

disease.

All of this information is required for each type of agent - virus, bacterial, toxins and their

different strains.  The BART resource currently contains representative examples of each of

these.
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Example: Biological Agent Reference Tool (BART):

 a Web-based response information tool

BART

This is what the BART output looks like for smallpox. The tool is web-

based so it can be quickly demonstrated as I will do now. In the figures

the fraction of initially infected is given for each stage over time. For

example the red curve in the upper figure is the fraction of incubating

cases.  By clicking at different times of mitigation, the impact on the

stages can be quickly observed.  This allows analysts to determine when

actions must be taken to avoid breakpoints, all assuming that the threat

agent is known. The results are given in fractions of the initial

population exposed, so that the values of the curves can quickly be

adjusted to different numbers of populations exposed.  For example for

an initial exposed population of 1000 people (using a mitigation of 11

days after first exposure) results in about 1300 people with severe

symptoms at 30 days, the peak. Alternative mitigation times can be

examined, quickly finding the breakpoints where actions must be taken.

BART also allows for different severities of epidemics if appropriate.

The resource provides valuable information on the symptoms and

treatments of the disease, enabling the analyst to quickly become

knowledgeable. I am happy to let you explore this resource yourself.  In

this prototype, 7 bioagents are available, with different severities and

mitigation times.
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City         State        Nation        World

Spatial Scale

Local-Global 

Environmental & Syndromic

Monitoring systems

Integrated National &

Regional Emergency Plan

Development

Past data,

resources and

planning

Need

Need

Resource needs: prediction of disease progression in heterogeneous

populations, across large scales, resolved at individual and local level

Although the BART resource is good first option to answer

“How quickly do I have to respond and with what resources?”

there are additional resources required driven by two new

requirements for planning and response:

1)  Because of the appreciation of the vulnerability and

dependency of our national systems on local outbreaks, we are

developing integrated national, regional and local response

plans; and

2)  Because monitoring systems are being developed that provide

resolution at an individual or local level and because we are

developing response options that are deployed at a individual

and local level (such as targeted antiviral prophylaxis - TAP),

we require resources that are resolved at an individual level.

Therefore we need resources that can predict disease progression

in diverse populations at an individual-to-global level, and

resolved spatially at least at community level.  This is a major

challenge, unthinkable 10 years ago.
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A Landscape of Epidemiological Options
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Deterministic

Agent-based

Community
models

EpiSims

S-I-R differential equations

City           State           Nation           World

Spatial Scale

Individual

Population

Community Stochastic 

Agent-based

Tool

Resource Required

Supercomputer

Workstation

This diagram organizes the different approaches available based on population

resolution and spatial scale.  Math-based epidemiological models have been developed

over the last 80 years, starting in 1927 with the populations level models: the so-called

Susceptible-Infected-Recovered (SIR) model. These models have three or more

differential equations that capture the movement of a disease progression within well-

mixed populations. “Well-mixed” means that individuals are not modeled, but portions

of a homogenous population. These models are still in use, because they can easily be

modified, solved and analyzed for stability conditions.  But they suffer because they

cannot describe individuals or random aspects of an epidemic. Unless modified, they

give the same answers each time they are solved, although we know that initial

epidemics are quite variable.

At the other end of the resolution are deterministic agent-based models that capture

each individual at every moment. The data requirements of these models are very

detailed and costly. These models are consequentially very computationally

demanding.  One of the first resources of this type is EpiSims, a project I worked on at

Los Alamos. Just as in other applications, these high-fidelity models are typically not

useful for analysis of ongoing events, but can be valuable to support the development

of faster-running resources.

The middle of the chart shows agent-based models that simplify the detailed contact

networks of the deterministic models by using a community model to capture the

likelihood that you’ll encounter different groups within your community. We’ll see an

example of this shortly. Because these models are more computationally efficient, they

can be extended to address the needs identified in the previous slide of connecting

local to global response plans and the new local and individual monitoring and

mitigation resources.  I helped lead the team that developed the first large-scale

stochastic agent model, called EpiCast, in 2002.  EpiCast was developed to address the

limitations of the EpiSims resource.
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EpiCast (Epidemiological Forecasting)

!! A stochastic agent-based simulation model to predictA stochastic agent-based simulation model to predict
the global/nationalthe global/national/regional/regional spread of infectious spread of infectious
diseases and to assess mitigation strategiesdiseases and to assess mitigation strategies

!! Capable of simulating billions of agents onCapable of simulating billions of agents on
supercomputers and millions on lasupercomputers and millions on laptopsptops

Four components:Four components:
1.1. An Individual disease progression modelAn Individual disease progression model - varies by type of - varies by type of

person: age, occupation, health status, but not location.person: age, occupation, health status, but not location.

2.2. DemographicsDemographics (where people live) and  (where people live) and workerflow dataworkerflow data
(where they work) (where they work) –– at  at ““communitycommunity”” resolution. resolution.

3.3. Community networkCommunity network: Contacts between people based on: Contacts between people based on
contact groups (family, work group, school, communitycontact groups (family, work group, school, community……).).

4.4. Irregular travel Irregular travel - travel between Community networks, usually- travel between Community networks, usually
long range.long range.

Disease model is general. The rest are determined byDisease model is general. The rest are determined by
data from area of operationsdata from area of operations

T. C. Germann, K. Kadau, I. M. Longini, and C. A. Macken, “Mitigation Strategies for Pandemic Influenza in the

United States,” Proceedings of the National Academy of Sciences 103, 5935-40 (2006).

EpiCast stands for Epidemiological Forecasting - and was

developed by applying a world-class atom modeling simulation

resource (called SPASM) to epidemics. We have shown that it

can be used to model all the people in the world if the right data

is available to initiate the simulation.  Four components of

information are required:

1.  A disease progression model within an individual: this describes

how a person gets sick given their age, state of health, etc.

2.  Demographics: this identifies where people live and work at an

individual level and is usually taken from census data.

3.  Community network: This specifies how people come into

contact with each other in a “normal” day or night.  Typically the

community includes all aspects of life that are important to an

infectious spread: family, work, schools, social gatherings, etc.

4.  Irregular travel: this describes the contacts that are in addition to

the community network model, and are typically long-range

travel.

Of these four, the disease model is general for each threat type, but

doesn’t depend on location. The rest are determined by the

activities of individuals in the area of application. Note that

because infections can spread in different ways, a community

model for aerosol transmission does not work for direct contact

transmissions.
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Influenza in the US:
Planning for the next pandemic

To show you an application of EpiCast and how it is used in

planning, we turn to pandemic influenza in the United States.  These

simulations of 280 million people were mostly done on a large

computer cluster or in some cases on massively parallel

supercomputers at Los Alamos.  These were done to support the

President’s Pandemic Influenza Response Plan.

Data from the United States were used to set up the simulations:

using demographics from the 2005 census, workflow data, and

long-range travel statistics.  For example, if you filled out a census

form in the United States, you are represented in the simulation;

your home is resolved at a community or “track” level, about 1000

to 5000 people.  The community model used is a validated model of

how an infection spreads in a community of 2000 people and

captures the likelihood of transmission in your home, school, work

and community. The community model is general enough that

simulations can be quickly transferred to other countries. For

example, Australia is using EpiCast for their pandemic flu planning.

EpiCast can also be used on a laptop for regional simulations, as is

being done in 3 U.S. cities in a Deptarrtment of Homeland Security

program.
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Baseline - Moderate Severity

Each Census tract is represented by a dot colored
according to its prevalence (number of symptomatic cases
at any point in time) on a logarithmic color scale, from 0.3-
30 cases per 1,000 residents.

This is what a baseline pandemic flu outbreak looks like

using EpiCast - where the flu is introduced by 40 infected

travelers returning from abroad entering 14 airports in the

United States and returning to their families. This is for a

moderately severity pandemic with a reproductive number

of 1.9 (meaning approximately 1.9 new cases for each

infection).

The color represents the prevalence on a logarithmic color

scale, shown at the left, from 0.3 to 30 cases per 1000

people at a given time. A baseline means that no additional

mitigation is used besides what an individual normally

does: when you are severely sick you stay at home: you

don’t travel, you don’t infect people at work or your

community, but you still can infect family or visitors.  The

details of the simulation are as realistic as possible, for

example the disease progression allows for a person to be

contagious when they are not aware they are sick, just as in

the real influenza.  All ages are resolved, so children and

adults have different behaviors and rates of infection.
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Baseline

simulated

pandemics

Most of the

epidemic activity

is in a 2-3 month

period, starting

1-2 months after

introduction

Different severities of the pandemic can be simulated by

adjusting the disease progression parameters.  Note that

EpiCast does not have a parameter for the reproductive

number, as in the SIR models, but the disease parameters

have to be adjusted to reproduce a desired reproductive

number. Generally for these unmitigated pandemics, the

change in severity changes the location of the peak of the

epidemic, but has less effect on the total number of

infecteds (the area under the curve).  For example in these

runs the total number infected only varies by 50% where

the peak varies by 2.  Note how the epidemic is not really

noticeable for 1-2 months and then peaks in 2 to 4 months,

as is observed in a normal flu season.

Norman Johnson
Norman Johnson - Sep 8, 2008 6:14 AM
Skip
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Breakpoint (R0 ~ 1) Behavior

R0 ~ 0.9

R0 ~ 1.2

A very important point is illustrated by these two baseline

simulations, which show two different severities of a

pandemic. Note how different they are in intensity.  The

pandemic has a breakpoint around a reproductive number

of one.  Therefore if a mitigation strategy can consistently

reduce the reproductive number to less than one, a

significant reduction in the intensity of the pandemic

occurs. This is the best outcome of an effective mitigation.
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Day 60

Day 80

Day 100

Day 120

Introduction of 40

infecteds on day 0,

either in NY or LA,

with and without

nationwide travel

restrictions

Because we don’t know how the pandemic will start, we

examined different introductions of the pandemic flu into

the United States.  Shown here is a comparison of an east

and west coast introduction (40 infected individuals). In

general, the initiation of the pandemic had little final

impact on the pandemics. Also shown in the figure is how

travel restrictions affect the pandemic: although they delay

the pandemic, they have almost no impact on the total

number of infected people, even for a 99% reduction in

long-distance travel. Therefore, quarantine and stopping

long-range travel only buys time for other mitigation

strategies, such a development and distribution of a low-

efficacy (effectiveness) vaccine.



20

Strategies for Pandemic Influenza Mitigation for RStrategies for Pandemic Influenza Mitigation for R00 = 1.8 = 1.8

(S(Simulations of 280imulations of 280  mill people in USA for mill people in USA for ““moderatemoderate”” pandemic pandemic))

Failed Mitigations - Full Pandemic (>10%)

• Social distancing alone

• Travel restrictions alone

• Social distancing + travel restrictions

Number ill per 1000Number ill per 1000

Uncertain Mitigations

• Vaccination - random

• School closure alone

Successful Mitigations

Hundreds of simulations were done. This is a summary of the most realistic

mitigation strategies and was used into develop the U.S. Pandemic Response

Plan.  The upper half shows the successful mitigations - called successful even

though many people still get sick - but less than 10% of the population.  Note

how that even the better mitigations still require multiple interventions for this

moderate pandemic - this is largely due to the fact that influenza is difficult to

stop spreading and that the entire population is susceptible to the pandemic,

unlike a normal influenza season.  Also note that the first one using

Therapeutic Antiviral Prophylaxis (TAP) alone requires numbers of anti-viral

doses that currently exceed those U.S. stockpiles.

At the bottom are the uncertain and failed mitigations.  The uncertain ones

sometimes work and sometimes don’t. They have a reproductive number near

one.

As the severity of the pandemic increases, some of the successful mitigations

will fail (like TAP alone), leaving fewer options.  At the most severe pandemic,

only the mitigation that use all options prevents a full pandemic.

While I talk about the these EpiCast results with confidence, there are many

uncertainties. For example, the effectiveness of TAP is unknown because anti-

viral effectiveness will depend on the viral strain that causes the pandemic.

Given the many uncertainties, simulation resources can always be improved

and better tailored to the current problem. But in a system-of-systems

viewpoint, there are other considerations that are of equal concern.

Resources like EpiCast tell you the impact of illness but do not tell you the how

these illnesses impact the functioning of society or mission readiness.  To end

the presentation I’ll review the resources that provide a system-of-systems

analysis.
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Modeling Military Force Structure & Interactions

Squad

Platoon

Company

Battalion

Squad

Squad

Brigade

Division

How “community network” (#2) is determined:

• Each individual solider belongs to a specific squad, platoon, …, army
• The squad … division levels comprise a hierarchy of “community

networks: an individual!s likelihood of becoming infected from these
interactions is: psqd•nsqd + pplt•nplt + … + pdiv•ndiv 

•  where the pX are
contact rates from the unit
interaction survey, and nX

are the number of
infectious soldiers in that
unit.
•  A survey was done to
determine px.

To show how EpiCast can be applied to the military, the

next slides show how EpiCast examined the spread of

smallpox in the Korean peninsula. First a “community”

network model is needed for the military. Each individual

belongs to a specific squad, platoon, etc.  This comprises a

hierarchy of community networks as shown. The likelihood

of an individual becoming infected depends on the

interactions of an individual with infecteds in each of these

“communities”, as shown in the equation.  Px is  the

probability of having contact with an infected person in

that unit. And Nx is the number of infectious soldiers in

that unit.  A survey was done to determine Px. Please

inquire about how how this was done and how you can

duplicate the same process.
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Modeling military force structure & interactions

How “irregular travel”, typically long-range travel, is modeled:

• Interactions with other divisions are captured in a manner analogous to
the long-range travel in the civilian sector:

• With a specified frequency, soldiers are randomly selected and sent
for a period of 1-14 days to a unit outside their own division

• The outside unit is randomly selected, but biased towards those in
the same corps to approximate “upward” interaction rates

PLT

CO

BTN BDE

DIV

PLT

CO

BTN BDE

DIV

The next requirement is to capture “irregular travel”. This

was captured by moving a solider selected randomly and

with a specified frequency to another unit for 1-14 days.

Because one is more likely to interact within the same

corps there is a bias in the frequency of unit selection to

capture this.
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Demographics and Workflow (#2) and Irregular travel (#4) for
Public-military Model for South Korea

Public (#2 and #4):

• Census  for 2000 for the 9 provinces and 6 special
cities, ranging from 0.5 to 10 million people each (46
million total) - used in “public” community network.

• Worker-flow data estimated by geographic proximity

(no USA census-like data available).
• Random long-range travel by public

Military demographics (#2):
• Republic of Korea forces down to battalion level

• U.S. forces in South Korea

Military-Civilian interaction (#4):
• Based upon the geographic position of each military

unit; soldiers occasionally (very rarely) interact with

a random community in the local province/special
city.

The details of the public community model is similar to

what was used for the earlier pandemic simulations. These

were based on the 2000 Census of Korea for the 9

provinces and 6 cities; 46 million people total. The worker

flow data for the public was estimated by geographic

proximity (comparable data to what we used for the USA

was not available). Finally random long-range travel was

used for the public, as for the military. The Republic of

Korea forces were modeled down to the battalion level.

And the U.S. forces were modeled in the detail that was

available.  The military-civilian interaction was modeled by

a relatively rare random interaction between a military and

public individual.
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Effect of US vaccination policy on public (smallpox)

• No protection of public is observed for different rates of vaccination of US

forces (as expected - military are not “spreaders”).

• US forces remain at risk due to the widespread epidemic among the
surrounding (unvaccinated) population.

0.6%51.4%52.7%90%

53.4%51.3%52.7%0%

US

forces

ROK

forces
civilians

US military

vaccination

level

Final attack rates
(averaged over 10 realizations):

This combined military and public model was then used to

evaluate different mitigation strategies for a smallpox

epidemic within South Korea. Representative results are

shown. Attack rates are the percent of the total population

infected. In examining the effect of vaccination rates of

U.S. troops on the South Korean public, not unexpectedly

no dependency on U.S. forces vaccination was observed -

that is, the military don’t act as spreaders.  The opposite is

not true: the U.S. force remains at risk due to the

widespread epidemic in the surrounding population, even

though their contact is rare.  There is nothing surprising

here. But this leads to looking at quarantine as an option.
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Mitigation: Post-detection intervention of quarantine

• Assume 50% leakage from civilian quarantine, but perfect squad-level
quarantine of military personnel

• Quarantine benefits non-quarantined civilians

0.6%51.4%52.7%90%

0.04%0.01%0.04%
90% +

quarantine

53.4%51.3%52.7%0%

US

forces

ROK

forces
civilians

US military

vaccination

level

Final attack rates
(averaged over 10 realizations):

Conclusions: no surprises because of the long time of disease progression of
small pox. The same conclusions are NOT true for pandemic influenza!

To simulate a real quarantine, we assume that 50% leakage would

occur from civilian quarantine, but military quarantine would be

perfect at a squad level. Not surprising, for smallpox, even a poor

quarantine is a very effective mitigation, for all populations.

Largely this is due to what we saw earlier that smallpox takes many

days to become infectious and you know when you are infectious,

so quarantines are effective options.  But the same is not true for

pandemic influenza, where a person can become a spreader even

before they show symptoms.

While I talk about the these EpiCast results with confidence, there

are many uncertainties. For example, the effectiveness of vaccine is

unknown because vaccine effectiveness will depend on the viral

strain. Given the many uncertainties, simulation resources can

always be improved and better tailored to the current problem. But

in a system-of-systems viewpoint, there are other considerations

that are of equal concern.

Resources like EpiCast tell you the impact of illness but does not

tell you the how these illnesses impact the functioning of society or

the readiness of a mission.  To end the presentation I’ll review the

resources that provide a system-of-systems analysis.
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System-of-System Resources
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Resource Required
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Critical Infrastructure Protection (CIP) resources

CIP/DSS - SIR-like tools

EpiSims-like tools

System-of-systems analysis tools, often call Critical

Infrastructure Protection (CIP) tools, are available using

different approaches, from simple formulas to simulations,

and covering different infrastructures. Just as we presented

a landscape for epidemiological models in a previous slide,

the same can be done for the CIP analysis resources. All

the same observations made earlier apply here as well -

what are their advantages and disadvantages, what are their

different uses, what are their computational and data

requirements, etc.  Two are highlighted: CIP/DSS at the top

and EpiSims-like tools at the bottom. These resources were

developed by the National Infrastructure Simulation and

Analysis Center (NISAC) Program and include the

extremes of differential equation models (which include the

SIRx models) at the top and deterministic agent-based

models at the bottom (which include the previously

described EpiSimS). Let’s look at one of these.
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Critical Infrastructure Interdependency Modeling: A
Survey of U.S. and International Research (Aug 2006)

30 infrastructure simulations tools reviewed, based on infrastructure included,
approach, coupling type, platform, software requirements, user skill, maturity.

•Tools: AIMS, Athena, CARVER+, CIMS, CIP-DSS, CIPMA, COMM-ASPEN,DEW,

EMCAS, FAIT, FINSIM, IIM, MIN, NEMO, Net-Centric GIS, NISAC, NGTools,…

This slide presents results from a recently published document
that reviewed 30 CIP tools. I don’t expect you to read this, but
the tools are listed in rows and the columns are modeled
infrastructures, coupling method between infrastructures,
software requirements, user skill required, and level of maturity.
The more the checkmarks in a row, the more general the tool.
The blue box is around the CIP/DSS tool and you see that it has
more boxes checked than most.

Norman Johnson
Norman Johnson - Sep 8, 2008 6:16 AM
skip
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! Critical Infrastructure Protection / Decision Support
System (CIP/DSS) Toolset:
– Includes 14-17 infrastructures

– Calibrated to detailed National Infrastructure Simulation and

Analysis Center (NISAC) resources

– Open-source approach - Implemented in a system simulation

resource: VENSIM

! Public Health component combines:
– A multi-binned SIRx infectious spread model (modifiable)

capable of treating regional, public/military, age populations

– Includes hospitals, staff, beds, etc.

– Includes many medical mitigation options including use of

therapeutic stockpiles and time required to distribute these

CIP/DSS Resource: Coupled Infrastructures

This slide summarizes CIP/DSS.  It can be comprehensive
because is uses an average, high-level differential equation
approach.  It includes 14-17 infrastructures and their many
interdependencies.  The public health component includes many
aspects not previously mentioned - occupancy in hospitals,
availability of staff and beds, medical supplies, etc.

Norman Johnson
Norman Johnson - Sep 8, 2008 6:16 AM
skip
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CIP-DSS Combined Epi and Public Health

Disease Progression
Public Health

This busy figure shows the CIP/DSS infrastructures that are
engaged during a large-scale outbreak.  In addition to the public
health system, it also includes emergency services (ambulances),
workforce impacts, government functions, banking and finance,
the transportation system, and postal and shipping as primary
systems, and many others when secondary interdependencies are
included. One can begin to see how much is missed in the prior
epidemiological models and the many opportunities for
breakpoints to arise for interdependencies.  For example, the
epidemiological models may show that you have an excellent
mitigation option, but unless you can deploy it quickly using
health services or postal systems, it may have no value.
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Determines impact on operational readiness and optimal
course of action from automated scenario exploration

Toolkit for Operational Medical Modeling (TOMM)

Organization

Model

Equipment

Maintenance

Model

Disease

Model

Equipment

Personnel Personnel

Readiness

Equipment

Readiness

Personnel

Readiness

Behavior

Metrics

Equipment

Readiness

Behavior

Metrics

For completeness, there are tools being developed specifically as

military operational planning support tools for infectious

disease.  One such tool is called the Toolkit for Operational

Medical Modeling, or TOMM, developed by the Office of

Naval Research in the U.S. Department of Defense.  It

combines the ability to use any of the previously discussed

approaches for epidemiological modeling with readiness

models that capture the impact on personnel and equipment

from personnel changes.  And because it can do automated

scenario exploration, it can also suggest optimal courses of

action from among a variety of options.
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Summary of Disease Progression Resources and Their Uses

Multisector Consequence

Analysis:

• Sector impact?

• Multiple breakpoints?

Spatial: regional;

Individual: none;

Time: minues

Regional-

Multisector

Couple

differential

equations

(SIRx type)

CIP-DSS
Source:

DHS/NISAC

Population impact Tool:

• How quickly do I have to act?

• What is the basic knowledge I

need to address the threat?

Spatial: none;

Individuals:

distributions;

Time: minutes

Diverse

populations

but well mixed

Novel:

distributions

and disease

stages

BART

Sponsor:

DHS/S&T

Operational readiness:

• Personnel?

• Mission/equipment?

• Best coarse-of-action

Depends on epi

model uses.

Theater of

operations;

public optional

Use any

epidemiolog-

ical model,

adds

readiness

evaluation

TOMM
Sponsor:

DoD/ONR

High-fidelity geospatial

epidemic progression:

• Validation of coarse models

• Individual mitigation options

Spatial: buildings;

Individual:

detailed activity;

Time: minutes

Regional and

local (to

building and

car level)

Individual

activity based

agent model

EpiSimS

Source:

DHS/NISAC

Spatial: 2000

people tracks;

Individual: yes;

Time: 1/2 day

Resolution

Epidemic Forecasting Tool:

• National impact?

• Individual-national options

World, nation,

regional and

local

Community

based agent

model,

census data

driven

EpiCast
Sponsor:

DHS/S&T

Typical UsesScopeMethodResource

To close, we present a chart to summarize the resources discussed and

their scope, their spatial and time resolution, and typical uses. These are

listed from the population-level resources at the top to the individual-

based resources near the bottom. The TOMM resource is included for

comparison.  Basically the method that is used determines the scope and

resolution possible, which in turn determines the typical uses.  The

method also determines the assumptions and the type of data required to

initiate the simulation.  This summary is good for understanding the

differences between each resource, but not for selection of a resource for

a specific purpose.
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Selection of Resource by Application

Ideal option

for CIP impact
- but limited

epi

Explicitly
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model

Limited local

and individual
mitigations
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aggregate

disease
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parameters

Differential
SIRx models

CIP-DSS

Good for

regional impact
and detailed

mitigations

Limited
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impact

Full spectrum,
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implemented
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for national-
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epidemics

Stochastic
agent-based

EpiCast

Deterministic
agent-based

Distribution
functions

Approach used

Predictive

workforce

impact

Inferred onlyImpact on civilian

workforce

Coarse

response

resource

only

Single

mitigation for
each biothreat

Data driven for
populations

BART

Computer

intensive,
limited

adaptability

Use in Operations

Response

Full spectrum,

realistically
implemented

Utility of different

medical mitigation
options at local level

State of the art
for regional

epidemics

Predict disease
progression in diverse

populations for

planning

EpiSimSApplication

green: go, yellowyellow: caution - limited utility, red: not feasible

A more useful way to summarize the information is to evaluate each

resource based on the application. This summary is useful for selecting a

resource to match an application.

The green dots indicate an appropriate resource for the application. The

yellow dots indicate caution is required.  And the red dots indicate

strong limitations exist.

Of course these evaluations are my recommendations and will depend on

the resource used and the user of the resource.

My experience has shown me that all resources can be used to

interpolate between known results in the hands of an expert, but not all

resources can be used to predict or extrapolate outside of known results

or expertise.

We can conclude that because different types of analysis have different

requirements, no one tool can meet all needs. That said, by looking at the

green dots in the different columns, representing the utility of different

approaches, the stochastic agent-based models are a good compromise,

capturing both the needs for individual or local use in order to evaluate

new surveillance and mitigation options and sufficient computational

efficiency to address local to national planning. Finally, the CIP

resources to understand the impact of infectious disease are just now

becoming available.
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K. Kadau, I. M. Longini, and C. A. Macken, “Mitigation Strategies for Pandemic Influenza in the United States,”

Proceedings of the National Academy of Sciences 103, 5935-40 (2006).

! EpiSims: http://ndssl.vbi.vt.edu/episims.php

! CIP-DSS: http://www.sandia.gov/mission/homeland/programs/critical/nisac.html

! TOMM: Darren Kwock <dkwock@alionscience.com>  (also njohnson@referentia.com)
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